

ATC2609 Datasheet

Version: 1.1

2015-09-16

Declaration

Disclaimer

Information given in this document is provided just as a reference or example for the purpose of using Actions' products, and cannot treated as a part of any quotation or contract for sale.

Actions products may contain design defects or errors known as anomalies or errata which may cause the products' functions to deviate from published specifications. Designers must not rely on the instructions of Actions' products marked "reserved" or "undefined". Actions reserves these for future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to them.

ACTIONS DISCLAIMS AND EXCLUDES ANY AND ALL WARRANTIES, INCLUDING WITHOUT LIMITATION ANY AND ALL EXPRESS OR IMPLIED WARRANTIES OF MERCHANTABILITY, ACCURACY, SECURITY, FITNESS FOR A PARTICULAR PURPOSE, TITLE, AND AGAINST INFRINGEMENT OF INTELLECTUAL PROPERTY AND THE LIKE TO THE INFORMATON OF THIS DOCUMENT AND ACTIONS PRODUCTS.

IN NO EVENT SHALL ACTIONS BE LIABLE FOR ANY DIRECT, INCIDENTAL, INDIRECT, SPECIAL, PUNITIVE, OR CONSEQUENTIAL DAMAGES WHATSOEVER, INCLUDING, WITHOUT LIMITATION FOR LOST OF DATA, PROFITS, SAVINGS OR REVENUES OF ANY KIND ARISING FROM USING THE INFORMATON OF THIS DOCUMENT AND ACTIONS PRODUCTS. REGARDLESS OF THE FORM OF ACTION, WHETHER BASED ON CONTRACT; TORT; NEGLIGENCE OF ACTIONS OR OTHERS; STRICT LIABILITY; OR OTHERWISE; WHETHER OR NOT ANY REMEDY OF BUYER IS HELD TO HAVE FAILED OF ITS ESSENTIAL PURPOSE, AND WHETHER ACTIONS HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES OR NOT.

Actions' products are not designed, intended, authorized or warranted for use in any life support or other application where product failure could cause or contribute to personal injury or severe property damage. Any and all such uses without prior written approval of an Officer of Actions and further testing and/or modification will be fully at the risk of the customer.

Ways of obtaining information

Copies of this document and/or other Actions product literature, as well as the Terms and Conditions of Sale Agreement, may be obtained by visiting Actions' website at: <u>http://www.actions-semi.com</u> or from an authorized Actions representative.

Trademarks

The word "Actions" and the logo are the trademarks of Actions Semiconductor Co., Ltd, and Actions (Zhuhai) Technology Co., Limited is authorized to use them. Word "炬芯" is the trademark of Actions (Zhuhai) Technology Co., Limited. Names and brands of other companies and their products that may from time to time descriptively appear in this document are the trademarks of their respective holders, no affiliation, authorization, or endorsement by such persons are claimed or implied except as may be expressly stated therein.

Rights Reserved

The provision of this document shall not be deemed to grant buyers any right in and to patent, copyright, trademark, trade secret, know how, and any other intellectual property of Actions or others.

Miscellaneous

Information contained or described herein relates only to the Actions products and as of the release date of this publication, abrogates and supersedes all previously published data and specifications relating to such products provided by Actions or by any other person purporting to distribute such information.

Actions reserves the rights to make changes to information described herein at any time without notice. Please contact your Actions sales representatives to obtain the latest information before placing your product order.

Additional Support

Additional product and company information can be obtained by visiting the Actions website at: <u>http://www.actions-semi.com</u>

Contents

De	clarati	ion ·····	ii
Co	ntents		······ iv
Re	vision	History	x
1	Intr	oductio	n1
	1.1	Overvi	ew
	1.2	Feature	2s1
	1.3	Typica	Applications ······ 4
	1.4	Orderin	ng Information ······ 4
2	Abs	olute M	aximum Rating
-	AUS		
3	Reco	ommen	ded Operating Conditions5
4	Elec	trical C	'haracteristics
4	4.1	Oversh	oot ····· 6
4	4.2	DC Ch	aracteristics ······ 6
5	Aud	lio Code	ec Subsystem ······ 7
	5.1	Audio	Diagram ····· 7
	5.1.1	l Regi	ster List ······ 7
	5.1.2	2 Regi	ster Description
	5.	1.2.1	AUDIOINOUT CTL ······ 8
	5.	1.2.2	DAC_DIGITALCTL ······9
	5.	1.2.3	DAC_VOLUMECTL0······10
	5.	1.2.4	DAC_ANALOG0
	5.	1.2.5	DAC_ANALOG1 ·····11
	5.	1.2.6	DAC_ANALOG2 ·····12
	5.	1.2.7	DAC_ANALOG3 ·····13
	5.	1.2.8	ADC_DIGITALCTL ······13
	5.	1.2.9	ADC_HPFCTL ·····15
	5.	1.2.10	ADC_CTL·····16
	5.	1.2.11	AGC_CTL017
	5.	1.2.12	AGC_CTL1
	5.	1.2.13	AGC_CTL2
	5.	1.2.14	ADC_ANALOG0 ······21
	5.	1.2.15	ADC_ANALOG1 ······21

5.2 A	Audio Characteristics	· 22
5.2.1	DAC+PA ·····	·23
5.2.2	PA	·24
5.2.3	ADC ·····	·26
5.3 F	РСМ	·26
5.3.1	PCM Interface	·26
5.3.2	Register List ·····	·27
5.3.3	Register Description	·27
5.3.	3.1 PCM0_CTL, PCM1_CTL, PCM2_CTL·····	·27
5.3.	3.2 PCMIF_CTL ·····	·28
6 TWI	Interface ·····	· 29
6.1 F	² eatures	· 29
60 T	Danistar List	. 20
0.2 F		29
6.3 F	Register Description	· 30
6.3.1	SADDR ·····	· 30
7 Power	r Management Unit ·····	·31
7.1 F	Features	· 31
72 N	Module Description	.31
7.2	DC-DC Module	.31
7.2.2	LDO Module	· 33
7.2.3	Charger Module	. 33
7.2.4	APDS Module ·····	· 34
7.2.5	Power Modes ·····	· 35
7.2.6	POR and Power ON/OFF Sequence Module ·····	· 36
7.2.7	ONOFF & Reset Module	· 37
7.2.8	Coulombmeter	· 37
7.3 F	Register List ·····	· 37
7.4 F	Register Description ·····	· 39
7.4.1	PMU_SYS_CTL0 ·····	· 39
7.4.2	PMU_SYS_CTL1 ·····	·41
7.4.3	PMU_SYS_CTL2 ·····	· 42
7.4.4	PMU_SYS_CTL3 ·····	·44
7.4.5	PMU_SYS_CTL4 ·····	· 44
7.4.6	PMU_SYS_CTL5	·45
7.4.7	PMU_SYS_CTL6 ·····	·46
7.4.8	PMU_BAT_CTL0 ·····	·46
7.4.9	PMU_BAT_CTL1 ·····	·47
7.4.10	PMU_VBUS_CTL0	·48
7.4.11	PMU_VBUS_CTL1 ·····	·49
7.4.12	PMU WALL CTL0······	· 49

 $\operatorname{Copyright}^{\scriptscriptstyle {\rm O}}$ 2015 Actions (Zhuhai) Technology Co., Ltd. All rights reserved.

7.4.13	PMU_WALL_CTL1······50
7.4.14	PMU_SYS_PENDING ·····51
7.4.15	PMU_APDS_CTL0 ····· 52
7.4.16	PMU_APDS_CTL1 ······54
7.4.17	PMU_APDS_CTL2 ····· 56
7.4.18	PMU_CHARGER_CTL ····· 56
7.4.19	PMU_SWCHG_CTL0 ·····57
7.4.20	PMU_SWCHG_CTL1 ····· 58
7.4.21	PMU_SWCHG_CTL2 ······60
7.4.22	PMU_SWCHG_CTL3 ·····61
7.4.23	PMU_SWCHG_CTL4 ·····62
7.4.24	PMU_DC_OSC63
7.4.25	PMU_DC0_CTL063
7.4.26	PMU_DC1_CTL0
7.4.27	PMU_DC2_CTL0
7.4.28	PMU_DC3_CTL0
7.4.29	PMU_DC4_CTL0
7.4.30	PMU_DC_ZR
7.4.31	PMU_LDO0_CTL0
7.4.32	PMU_LDO1_CTL0
7.4.33	PMU_LDO2_CTL0
7.4.34	PMU_LDO3_CTL0
7.4.35	PMU_LDO4_CTL0
7.4.36	PMU_LDO6_CTL0
7.4.37	PMU_LDO7_CTL0
7.4.38	PMU_LDO8_CTL0
7.4.39	PMU_LDO9_CTL······72
7.4.40	PMU_OV_STATUS
7.4.41	PMU_UV_INT_EN
7.4.42	PMU_UV_STATUS ······75
7.4.43	PMU_OC_INT_EN
7.4.44	PMU_OC_STATUS ······78
7.4.45	PMU_OT_CTL
7.4.46	PMU_CM_CTL0
7.4.47	PMU_PWR_STATUS
7.4.48	PMU_S2_PWR
7.4.49	CLMT_CTL0
7.4.50	CLMT_DATA0
7.4.51	CLMT_DATA1
7.4.52	CLMT_DATA2
7.4.53	CLMT_DATA3
7.4.54	PMU_ADC12B_I85
7.4.55	PMU_ADC12B_V85
7.4.56	CLMT_OCV_TABLE ······85

	7.4.:	57	CLMT_R_TABLE ·······	86
8	Aux	iliary.	ADC	88
č	. 1			00
8	5.1	Modu	le Description	88
8	3.2	Regis	ter List ······	88
8	3.3	Regis	ter Description ······	89
	8.3.	1 PM	IU_AUXADC_CTL0 ······	89
	8.3.2	2 PM	IU_AUXADC_CTL1 ······	90
	8.3.	3 PM	IU_BATVADC	91
	8.3.4	4 PM	1U_BATIADC	91
	8.3.	5 PM	IU_WALLVADC ······	91
	8.3.	6 PM	1U_WALLIADC ······	91
	8.3.	7 PM	1U_VBUSVADC······	92
	8.3.	8 PM	1U_VBUSIADC ······	92
	8.3.	9 PM	IU_SYSPWRADC ······	92
	8.3.	10	PMU_REMCONADC ······	92
	8.3.	11	PMU_SVCCADC ······	92
	8.3.	12	PMU_CHGIADC ······	93
	8.3.	13	PMU_IREFADC ······	93
	8.3.	14]	PMU_ICTEMPADC	93
	8.3.	15	PMU_AUXADC0 ······	93
	8.3.	16	PMU_AUXADC1 ······	93
	8.3.	17	PMU_ICTEMPADC_ADJ······	94
9	Clo	ck Mai	nagement Unit······	95
, C	× 1			0.5
ç	<i>v</i> .1		sister List	95
	9.1.	1 Ke_{2}	gister Description	95
	9.1.	2 Ke	CML DEVEST	95
	9.	.1.2.1	CMU_DEVRS1	93
9	9.2	Real	Fime Clock ······	95
	9.2.	1 Mc	odule Description	96
	9.2.2	2 Re	gister List	96
	9.2.	3 Re	gister Description	97
	9.	.2.3.1	RTC_CTL ·····	97
	9	.2.3.2	RTC_MSALM ······	98
	9	.2.3.3	RTC_HALM ······	98
	9	.2.3.4	RTC_YMDALM ······	98
	9.	.2.3.5	RTC_MS ·····	99
	9.	.2.3.6	RTC_H	99
	9.	.2.3.7	RTC_DC ······	99
	9	.2.3.8	RTC_YMD ······	99
10	Infr	ared F	Remote Controller ······ 16	00

 $\operatorname{Copyright}^{\scriptscriptstyle {\rm O}}$ 2015 Actions (Zhuhai) Technology Co., Ltd. All rights reserved.

	10.1	Features		0
	10.2	Modules Description		0
	10.2	.1 9012 Protocol	100	0
	10.2	.2 NEC Protocol (8-bit) ·····		1
	10.2	.3 RC5 Protocol		2
	10.2	.4 RC6 Protocol ·····		3
	10.3	Register List ·····		4
	10.4	Register Description	10:	5
	10.4	.1 IRC_CTL ·····	10:	5
	10.4	.2 IRC_STAT ·····	10:	5
	10.4	.3 IRC_CC	100	6
	10.4	.4 IRC_KDC·····		6
	10.4	.5 IRC_WK		7
	10.4	.6 IRC_RCC ·····		7
11	Inte	rrupt Controller	10	8
	11.1	Features	108	8
	11.2	Block Diagram ·····		8
	11.2		10	0
	11.5	Register List	109	9
	11.4	Register Description		9
	11.4	.1 INTS_PD ·····		9
	11.4	.2 INTS_MSK		9
12	Gen	eral Purpose I/O ·····	••••••11	1
	12.1	Features		1
	12.2	Registers List ·····		1
	12.3	Register Description		1
	12.3	.1 MFP_CTL ·····		1
	12.3	.2 PAD_VSEL		2
	12.3	.3 GPIO_OUTEN		3
	12.3	.4 GPIO_INEN		3
	12.3	.5 GPIO_DAT ·····		3
	12.3	.6 PAD_DRV ·····	114	4
	12.3	.7 PAD_EN	11:	5
13	Pin 1	Description ·····	110	6
	13.1	ATC2609 Pin Assignment	110	6
	13.2	ATC2609 Pin Definition ·····		7
14	Pack	kage and Ordering Information	119	9

14.1		119
Appendi	x	120

Revision History

Date	Revision	Description
2015-03-05	1.0	First Release
2015-09-15	1.1	Update pin 57/58 name

1 Introduction

1.1 Overview

ATC2609 is an integrated Audio Codec and Power Management IC, which provides a cost effective, single-chip solution for portable smart systems. It acts as a slave device on TWI interface controlled by Master. Integrated Audio CODEC provides all necessary functions for high-quality recording and playback. Programmable on-chip amplifiers allow direct connection to headphones. Digital and analog microphone interface are both supported.

Internal Power Management circuit controls the start-up, shutdown, as well as sleep and wake-up sequence of each power signals. It also detects and handles abnormal conditions such like overvoltage and overcurrent.

ATC2609 includes 6 programmable DC-DC converters, one of the DC-DCs is used for battery charging switch, 10 low-dropout (LDO) regulators providing suitable supply voltages for each part of the system, including on-chip audio CODEC as well as off-chip components such as a digital core, memory chips, WiFi and sensor modules. Each of these is voltage programmable. ATC2609 can be powered by a lithium battery, a wall adaptor or Host USB port.

On-chip battery charger supports both trickle charging and fast (constant current and constant voltage) charging for single-cell Lithium battery. Built-in Coulombmeter supports accurate battery capacity monitor. Charging current, termination voltage, and charger time-out are programmable to fit different types of batteries.

An external 32.768 kHz crystal oscillator should be supplied to ATC2609 system to get an accurate clock for Real Time Clock (RTC) and alarm function capable of waking up the system. IR and multi-channel ADC capable of waking up the system are also integrated.

1.2 Features

Audio CODEC

- ADC
 - Built-in stereo 21-bit input sigma-delta ADCs
 - SNR>88dB, SNR(A-WEIGHTING)>91dB, THD<-82dB
 - Support sample rate of 96k/48k/32k/24k/16k/12k/8k/44.1k/22.5k/11.025k
 - A digital high-pass filter can be switched in line with the ADCs under serial control to remove residual DC offsets and Wind Noise

• DAC

- Built-in 2.0 channel 24-bit input sigma-delta DACs
- SNR>93dB, SNR (A-WEIGHTING)>96dB, THD<-80dB
- Each channel has independent digital volume and mute control
- Support sample rate of 192k/96k/48k/32k/24k/16k/12k/8k/176.4k/88.2k/44.1k/22.05k/

11.025k

Headphone & PA

- Support stereo headphone output interface
- Built-in stereo 20mW PA (Power Amplifier) for headphone with 41 level volume control
- > Zero cross function to eliminate the pop of changing the volume sharply
- Support traditional mode and direct drive mode (for headphone)
- An anti-pop circuit for suppressing noise of PA when enable or disable PA

• Microphone

- Support mono full difference input or stereo single-ended input analog microphone
- With a Configurable Automatic Gain Control (AGC), Zero Crossing and Noise Gating for analog microphone using
- A stereo digital microphones (DMIC) interface is provided, with a data input to PMIC and a clock output for external stereo digital microphones

• I2S

- Support 2.0 channel I2S transmitter and Receiver, slave mode only
- Support sample rate of 192k/96k/48k/32k/24k/16k/12k/8k/176.4k/88.2k/44.1k/22.05k/ 11.025k

• PCM Features

- ▶ Include 3 PCM Modules, PCM0(for Master), PCM1(for BT), PCM2(for Baseband)
- ▶ Include PCM TX and PCM RX, slave mode only
- Linear PCM (13~16bit), u-Law (8bit), A-Law (8bit)
- ➢ PCM clock up to 2.048MHz
- Long Frame Sync and Short Frame Sync

Power Supply Generation

- > Over-voltage, over-current, over-temperature protection for DC-DCs and LDOs
- 6 DC-DCs:
 - ▶ 1 DC-DC Buck Switch for Charger (Up to 3000mA)
 - > 1 DC-DC Buck Converter $(0.6 \sim 2.2 \text{V}, \text{Up to } 3000 \text{mA})$
 - ▶ 3 DC-DC Buck Converter (0.6~2.2V, Up to 2000mA)
 - > 1 DC-DC Buck Converter $(0.6 \sim 3.3 \text{V}, \text{Up to } 1200 \text{mA})$
- 10 LDOs:
 - ▶ 3 LDO voltage regulator (2.3~3.3V, Up to 500mA), high PSRR
 - ▶ 5 LDO voltage regulator (0.7~3.3V, Up to 200mA), high PSRR
 - ▶ 1 LDO voltage regulator (2.6~3.3V, Up to 25mA), for standby use
 - > 1 LDO voltage regulator (1.8V, Up to 20mA), for RTC use

Battery Charger 3A

- Single-cell Li-battery charger
- Switched mode charger with integrated power FET for up to 3A current
- 12-bit Coulombmeter
- Thermal protection for charge control

IR

- Support RC5\9012\NEC(8-bit)\RC6 protocol
- Compatible with 36KHz, 38KHz, 40KHz carrier

• Support IRC wake up

Power Saving Mode

- Several power saving modes including standby mode, sleep mode and deep-sleep mode
- "Always on" RTC with wake-up alarm
- In deep-sleep with RTC always on, the battery current can be less than 30µA

System Control

- Two-Wire Serial Interface
- Configurable power sequencing
- Power-on reset signal, sleep mode signal and fault conditions interrupt signal
- Adaptive power distribute system, autonomous power source selection (battery, wall adaptor or host USB port)

Additional Features

- A multi-channel 16-bit ADC, can be used as voltage, current measurement or Remote control
- Support interrupt to Master
- A few configurable GPIO pins
- ESD Level of HBM pass over 2000V for all IOs

Package

• QFN68, 8mm * 8mm, 0.4mm pin pitch

1.3 Typical Applications

ATC2609 mainly consists of Power Management Unit and Audio CODEC block. Figure 1-1 below shows the typical application diagram of ATC2609.

Figure 1-1 Typical Application diagram

1.4 Ordering Information

Table 1-1 Ordering Information

Part Numbers	Package	Size
ATC2609	QFN68	8mm * 8mm

2 Absolute Maximum Rating

These absolute maximum ratings are stress ratings, operating at or beyond these ratings for more than 1ms may result in permanent damage. Unless otherwise noted, all voltage values are relative to VSS.

Parameter	Symbol	Min	Max	Unit			
Ambient Temperature	Tamb	TBD	TBD	°C			
Storage Temperature	Tstg	-55	+150	°C			
Supply Voltage	DCxIN/WALL/VBUS/BAT/SYSPWR	-0.3	6.5	V			
Innut Valtaga	Digital IO	-0.3	3.6	V			
input voltage	Analog IO (FMIN/MICIN)	-0.3	3.6	V			
ESD Stress Voltage	VESD (Human Body Model)	2000	-	V			

Table 2-1 Max ratings of ATC2609

3 Recommended Operating Conditions

Parameter	Symbol	Min	Тур	Max	Unit
Wall adapter input source	WALL	4.5	5.0	5.5	V
USB VBUS input source	VBUS	4.75	5.0	5.25	V
Battery input source	BAT	3.4	3.8	4.2	V
Supply voltage	DCxVIN/LDOxIN/SWxIN	3.3		5.5	V
Core supply	VDD		1.8		V
IO supply	VCC		3.1		V
Ground	GND/AGND/DCxGND/CDPGNDx		0		V

Table 3-1 Recommended Operating Voltage

Note: in DCxVIN/LDOxIN/SWxIN and DCxGND/CDPGNDx, x is number, for example, DC1VIN represents the Input Voltage of DC-DC1.

4 Electrical Characteristics

4.1 Overshoot

The maximum DC voltage on power supply pins is 6.5V. However, during voltage domains switching period, the device can tolerate overshoot for up to 10µs, as shown in Figure 4-1 below.

Figure 4-1 Tolerance for overshoot for up to 10µs

Tahlø	4-1	Extromo	Values	for	Innut	Pins
Iuvie	4-1	LAITeme	ruues	jur	тприі	rins

Parameter	Symbol	Start	Max	Unit
Supply voltage	DCxIN/WALL/VBUS/BAT	-0.3	12	V

ATC2609 can tolerate 1,000 times of such pulse. But exposed to overshoot circumstances for too many times may affect device's lifetime.

4.2 DC Characteristics

Table 4-2 DC Characteristics

VCC = 3.1V for IO Pins, Tamb = $0 \sim 70^{\circ}C$

Parameter	Symbol	Min	Тур	Max	Unit
Low-level input voltage	V _{IL}	-	-	0.8	V
High-level input voltage	V _{IH}	2.0	-	-	V
Low-level output voltage	V _{OL}	-	-	0.4	V
High-level output voltage	V _{OH}	2.4	-	-	V

5 Audio Codec Subsystem

5.1 Audio Diagram

Audio Codec subsystem integrates I2S interface, DAC, ADC, AGC, PCM interface, MIC amplifier, FM amplifier, headphone PA. I2S interface in slave mode supports 2.0 channel transmitter and receiver. I2S supports sample rate of 192k/96k/48k/32k/24k/16k/12k/8k/88.2k/44.1k/22.05k/11.025k. The 2.0 channel Sigma-Delta DAC supports the same sample rate as I2S. The stereo 20mW PA (Power Amplifier) is integrated for headphone with 41-level volume control, Non-direct and Direct Drive mode both with anti-pop circuit are supported for headphone. The subsystem supports stereo analog microphones (AMIC) and stereo Digital Microphones (DMIC). The AMIC interface provides programmable bias output and the DMIC interface provides a clock signal for external stereo DMIC and a data signal for PMU. The analog microphone has the configurable Automatic Gain Control (AGC), Zero Crossing and Noise gating. For PCM, right channel data of ADC will be selected for PCM.

Figure 5-1 Audio Diagram & Signal Path

5.1.1 Register List

Table	5-1	AUDIO	OUT	IN	Controller	Registers	Address
more	• •	10210	001		001111 01101	110Sibiers	1 1000 000

Name	Physical Base Address
AUDIO_OUT	0xA0
AUDIO_IN	0xA0

Table 3	5-2 Aı	idio R	egisters
---------	--------	--------	----------

		5
Offset	Register Name	Description

0x00	AUDIOINOUT_CTL	AUDIO IN/OUT Control for I2S Register
0x02	DAC_DIGITALCTL	DAC Control EN&MUTE Register
0x03	DAC_VOLUMECTL0	DAC FL&FR VOLUME Control Register
0x04	DAC_ANALOG0	DAC Analog 0 Register
0x05	DAC_ANALOG1	DAC Analog 1 Register
0x06	DAC_ANALOG2	DAC Analog 2 Register
0x07	DAC_ANALOG3	DAC Analog 3 Register
0x08	ADC_DIGITALCTL	ADC Digital Control Register
0x09	ADC_HPFCTL	ADC High Pass Filter Control Register
0x0A	ADC_CTL	ADC control register
0x0B	AGC_CTL0	AGC Control 0 Register
0x0C	AGC_CTL1	AGC Control 1 Register
0x0D	AGC_CTL2	AGC Control 2 Register
0x0E	ADC_ANALOG0	ADC Analog 0 Register
0x0F	ADC_ANALOG1	ADC Analog 1 Register

5.1.2 Register Description

5.1.2.1 AUDIOINOUT_CTL

AUDIO IN/OUT Control for I2S Register

Offset = 0x00

Bit(s)	Name	Description	Access	Reset
15:12	-	Reserved	-	-
		MCLK Divided to DAC		
11	MDD	0:DIV=1	RW	0
		1:DIV=2		
10	-	Reserved	-	-
		Direct Drive Output Over Current status IRQ		
		1: enable		
		0: disable		
9	OCIEN	If DAC_ANALOG2[5] is enabled and	RW	0
		DAC_ANALOG3[14] is high, when this bit is		
		enabled, an interrupt will be sent to the interrupt		
		controller.		
		I2S Output Enable.		
8	OEN	0: Disable	RW	0
		1: Enable		
7	-	Reserved	-	-
		I2S RX&TX Mode Select		
		00:3 wires mode		
6:5	IMS	01:4 wires mode	RW	00
		10:6 wires mode		
		11:Reserved		

4:2	-	Reserved	-	-
		I2S Input Enable.		
1	INEN	0: Disable	RW	0
		1: Enable		
		I2S input word length select		
0	IWLS	0:32-bit	RW	0
		1:Reserved		

5.1.2.2 DAC_DIGITALCTL

DAC Control EN_MUTE Register

Offset = 0x02

Bit(s)	Name	Description	Access	Reset
15:12	-	Reserved	RW	0
11:10	DACINSEL	DAC input source select 00:I2S (music) 01:PCM0_IN(key tone) 10:PCM2_IN(voice) 11:PCM0_IN add PCM2_IN(voice add key tone)	RW	00
9	_	Reserved	_	_
8	DISRS	DAC INPUT SAMPLE RATE SEL 0:MCLK/256 1:MCLK/128	RW	0
7:6	DBWFL_FR	DACFL&FR BANDWIDTH 00:WIDE 01:MIDDLE 10:NARROW 11:Reserved	RW	00
5:4	DOSRSFL_FR	DAC FL&FR OUTPUT SAMPLE RATE SEL 00:MCLK/16 01:MCLK/8 10:MCLK/4 11:MCLK/2	RW	00
3	DMFR	DACFR DIGITAL MUTE 1:MUTE 0:UNMUTE	RW	0
2	DMFL	DACFL DIGITAL MUTE 1:MUTE 0:UNMUTE	RW	0
1	DEFR	DACFR DIGITAL ENABLE 1:ENABLE 0:DISABLE	RW	0
0	DEFL	DACFL DIGITAL ENABLE 1:ENABLE	RW	0

0:DISABLE

5.1.2.3 DAC_VOLUMECTL0

DAC FL_FR VOLUME CONTROL ((3/8) dB/level)

Offset = 0x03

Bit(s)	Name	Description	Access	Reset
15:8	DACFR_VOLUME	VOLUME CONTROL (3/8) dB/level 0xFF :+24 dB 0xBF : 0 dB 0xBE : -3/8 dB 0x00 : -72 dB	RW	BE
7:0	DACFL_VOLUME	VOLUME CONTROL (3/8) dB/level 0xFF :+24 dB 0xBF : 0 dB 0xBE : -3/8 dB 0x00 : -72 dB	RW	BE

5.1.2.4 DAC_ANALOG0

DAC Analog Register

Offset = 0x04

Bit(s)	Name	Description	Access	Reset
		PA bias current control.		
15:14	PAIB	11:biggest	RW	01
		00:smallest		
		OPDA bias voltage control.		
13:12	OPDAVB	11:biggest	RW	01
		00:smallest		
11	-	Reserved	-	-
		OPDA bias current control.		
10:8	OPDAIB	111:biggest	RW	011
		000:smallest		
		OPDTS bias current control.		
7:6	OPDTSIB	11:biggest	RW	01
		00:smallest		
		OPVB bias current control.		
5:4	OPVBIB	11:biggest	RW	01
		00:smallest		

3	-	Reserved	-	-
		Karaoke Mix Function Enable		
		0:disable		
3	KFEN	1:enable	RW	0
		Note: when enable this bit, MIC0INL and		
		MIC0INR will be added and transmitted to PA		
		OPG bias current control.		
2:0	OPGIB	111:biggest	RW	101
		000:smallest		

5.1.2.5 DAC_ANALOG1

DAC Analog Register

Offset = 0x05

Bit(s)	Name	Description	Access	Reset
		MIC mute,		
15	MICMUTE	0: mute	RW	0
		1: unmute		
		FM mute,		
14	FMMUTE	0: mute	RW	0
		1: unmute		
13:11	-	Reserved	-	-
		DACFL&FR Playback Mute		
10	DACFL_FRMUTE	0: mute DAC Playback,	RW	0
		1: enable DAC playback		
		PA output stage IQ control.		
9:8	PAIQ	00:smallest	RW	00
		11:biggest		
7	-	Reserved	-	-
		PA output swing select.		
		0:2.828Vpp		
		1:1.6Vpp		
		This bit will control the attenuation before		
		DAC's output goes into PA.		
6	DACW	Set this bit to 1 when PA is driving a	RW	1
0	1710 W	headphone, there must to be attenuation for		1
		DAC's output (from about 2.4Vpp to 1.6Vpp)		
		and PA will output 1.6Vpp at max volume.		
		Set it to 0, there will be no attenuation and PA		
		will output 2.4Vpp and can function as		
		LINEOUT.		
		Headphone Amp Volume Control.		
5.0	VOLUME	41 levels in total	RW	000000
5.0	V OLUIVIL	(Values between 0b000000 and 0b101000 are	17.11	000000
		valid. Any value over 0b101000 set to it will be		

	taken as 0b101000 actually.	
	Reading value will just show what you have	
	written to it.)	

5.1.2.6 DAC_ANALOG2

DAC Analog2 Register

Offset = 0x06

Bit(s)	Name	Description	Access	Reset
15	PAZD	PA OUTPUT Volume Near ZERO DETECT: 0:Invalid 1:Valid When this bit is selected 1,"click" of volume tuning will cut down. But if small volume is selected this bit should be 0 to avoid some issue	RW	0
14:12	-	Reserved	-	-
11	DACI	DAC Current select: 0:Small 1:Large	RW	0
10	P2IB	PA bias Double for ATP2 mode: 0: *1 1: *2	RW	0
9	ATP2CE	For ATP2,On-chip ramp Connect EN: 0: Disconnect 1: Connect	RW	0
8	PAVDC	Antipop2 pa discharge control: 0: switch open 1: switch close ,discharge	RW	0
7	-	Reserved	-	-
6	PAMIX	PA OUTPUT mix config: 0: NOT MIX 1:AOUTFL+AOUTFR to AOUTFL and AOUTFR	RW	0
5	DDOVV	Direct Drive overload protect and recover 0: Overload protect and recover is valid 1: Overload protect and recover is invalid	RW	0
4	OPVROEN	Analog circuit of the internal DAC_OPVRO enable,0: Disable1: Enable	RW	0
3	DDATPR	Direct Drive antipop_VRO Resistant Connect Enable: 0: disconnect 1: connect	RW	0
2:0	OPVROOSIB	Analog circuit of the internal DAC_OPVRO output stage IQ control.	RW	000

	111:biggest	
	000:smallest	

5.1.2.7 DAC_ANALOG3

Offset = 0x07

Bit(s)	Name	Description	Access	Reset
15	-	Reserved	-	-
		DAC VRO overload state:		
14	OVLS	1: VRO overload	R	0
		0: VRO normal work state		
		Volume change Delay bit:		
13	VLCHD	0: disable	RW	0
		1: enable		
12:11	-	Reserved	-	-
		All DAC&PA Bias enable		
10	BIASN	0: disable	RW	0
		1: enable		
		Channel FR&FL Antipop2 LOOP2 enable		
9	ATPLP2_FR_FL	0: disable	RW	0
		1: enable		
		OPCM1 bias current control.		
8:7	OPCM1IB	11:biggest	RW	01
		00:smallest		
		OPVRO bias current control.		
6:4	OPVROIB	000:smallest	RW	011
		111:biggest		
		PA FR&FL output stage enable		
3	PAOSEN_FR_FL	0: disable	RW	0
		1: enable		
		PA FR&FL enable		
2	PAEN_FR_FL	0: disable	RW	0
		1: enable		
		DAC FL ANALOG enable		
1	DACEN_FL	0: disable	RW	0
		1: enable		
		FR DAC ANALOG enable		
0	DACEN_FR	0: disable	RW	0
		1: enable		

5.1.2.8 ADC_DIGITALCTL

ADC Digital Control Register Offset=0x08

Bits	Name	Description	Access	Reset
15:13	-	Reserved	-	-
		ADC OUTPUT SELECT		
12	ADCOS	0: I2S OUTPUT	RW	0
		1: PCM		
		ADCL And ADCR Added enable		
		0: disable		
		1: enable		
11	ADLK	Note: this bit is designed for karaoke use, when this	RW	0
		Bit is 1, ADCL data and ADCR data are added and	1	
		transmitted to MCU.		
10	-	Reserved	-	-
	1	ADC DIGITAL Gain Control		
		0000: 0dB		
		0001: 3dB		
		0010: 6dB		
		0011: 9dB		
		0100: 12dB		
		0101: 15dB		
		0110: 18dB		
9:6	ADGC	0111: 21dB	RW	0000
		1000: 24dB		
		1001: 27dB		
		1010: 30dB		
		1011: 33dB		
		1100: 36dB		
		1101: 39dB		
		1110: 42dB		
		1111: 45dB		
		DMIC CLOCK Divide		
5	DCD	0: $div = 4$	RW	0
		1: div = 2 (for voice recording)		ľ
		DMIC CLOCK enable		
4	DCEN	0: disable	RW	0
		1: enable		C
		Voice Recording enable		
		0: disable		
3	VREN	1: enable	RW	0
		Note: when this bit is set to 1, $bit[5]$ also should be set to 1.		
	+	DMIC Rising or falling edge sampling Select		
		0: Left channel sampling at rising edge, Right channel:		
2	DRFS	sampling at falling edge:	RW	0
		1: Left channel sampling at falling edge, Right channel:		
		sampling at rising edge;		

		DMIC Left filter enable		
1	DMLEN	0: disable	RW	0
		1: enable		
	DMREN	DMIC Right filter enable		
0		0: disable	RW	0
		1: enable		

Note1: when DMIC is enabled, ADC should be disabled, and when ADC is enabled, DMIC should be disabled. That is to say, when ADC_DIGITALCTL bit[0] or bit[1] is 1, both ADC_CTL bit[2] and bit[3] should be set to 0. When ADC_CTL bit[2] or bit[3] is 1, both ADC_DIGITALCTL bit[0] and bit[1] should be set to 0.

In single channel mode, only when DMIC left filter is enabled, the output of DMIC right filter is zero, and if DMIC right filter is enabled, the output of DMIC left filter will be zero. Note2: PCM0(for Master), PCM1(for BlueTooth), PCM2(for Base Band).

5.1.2.9 ADC_HPFCTL

ADC Digital Control Register

Offset=0x09

Bits	Name	Descri	iption									Access	Reset
15:8	-	Reserv	ved									-	-
		SR select for removing wind noise filter0											
		00:8kH	Hz/11.0)25kHz/12k	кНz								
7:6	SRSEL0	01:16k	Hz/22	.05kHz/241	кНz							RW	00
		10:32k	:Hz/44	.1kHz/48kI	Hz								
		11:Res	served										
		For W	ind No	ise filter0 (Cut Of	f frequ	ency						
						S	R fs(Hz)						
			8k	11.025k	12k	16k	22.05k	24k	32k	44.1k	48k		
	WNHPF0CUT	000	82	113	122	82	113	122	82	113	122		
		001	102	141	153	102	141	153	102	141	153		
5:3		010	131	180	196	131	180	196	131	180	196	RW	000
		011	163	225	245	163	225	245	163	225	245		
		100	204	281	306	204	281	306	204	281	306		
		101	261	360	392	261	360	392	261	360	392		
		110	327	450	490	327	450	490	327	450	490		
		111	408	563	612	408	563	612	408	563	612		
		Select	High I	Pass Filter0	for D	C offse	t or Wind	Noise					
2	HPF0DW	0: for 1	DC off	set								RW	0
		1: for Wind Noise											
		High F	Pass Fil	lter0 L Ena	ble								0
1	HPF0LEN	0: enal	ole									RW	
		1: disa	ble										

		High Pass Filter0 R Enable		
0	HPFOREN	0: enable	RW	0
		1: disable		

5.1.2.10 ADC_CTL

ADC control register

Offset=0x0A

Bits	Name	Description	Access	Reset
		Internal MIC Power VMIC Control		
15	VMICINEN	0: disable	RW	0
		1: enable		
		FM input left channel enable;		
14	FMLEN	0: Disable	RW	0
		1: Enable		
		FM input right channel enable;		
13	FMREN	0: Disable	RW	0
		1: Enable		
		FM input gain control:		
		000:-3.0dB		
		001:-1.5dB		
		010:0.0dB		
12:10	FMGAIN	011:1.5dB	RW	010
		100:3.0dB		
		101:4.5dB		
		110:6.0dB		
		111:7.5dB		
		External MIC Power VMIC enabled		
9	VMICEXEN	0: disabled	RW	0
		1: enabled		
		External MIC Power VMIC voltage setting		
		00: 2.7V		
8:7	VMICEXST	01: 2.9V	RW	01
		10: 3.1V		
		11: 3.2V		
		MIC0 input L Channel Enabled		
6	MICOLEN	0: disable	RW	0
		1: enable		
		MIC0 input R Channel Enabled		
5	MIC0REN	0: disable	RW	0
		1: enable		
		MIC0 input Fully differential or Single ended select		
4	MIC0FDSE	0: Fully Differential;	RW	0
		1: Single Ended;		

		ADC Left Channel Enable		
3	ADLEN	0: disable	RW	0
		1: enable		
		ADC Right Channel Enable		
2	ADREN	0: disable	RW	0
		1: enable		
		Sigma-Delta A/D Input Select:		
		00: Select MIC		
1:0	ADCIS	01: Select FM	RW	01
		10: Select Internal Analog Mixer Output (AOUT)		
		11: Reserved		

5.1.2.11 AGC_CTL0

AGC Control Register 0 Offset = 0x0B

Bits	Name	Description	Access	Reset
		AMP1 Left Channel Gain Select at AGC0 disabled		
		0000: 16.5dB		
		0001: 18.0dB		
		0010: 19.5dB		
		0011: 21.0dB		
		0100: 22.5dB		
		0101: 24.0dB	Access I RW 1	1001
		0110: 25.5dB		
		0111: 27.0dB		
15.12		1000: 28.5dB		
13.12	AWIFIGUL	1001: 30.0dB		1001
		1010: 31.5dB		
		1011: 33.0dB		
		1100: 34.5dB		
		1101: 36.0dB		
		1110: 37.5dB		
		1111: 39.0dB		
		AMP1 AGC Gain can be Read out when AGC0 is		
		enabled, and can be written and read out when AGC0 is		
		disabled.		

		AMP1 Right Channel Gain Select at AGC0 disabled		
		0000: 16.5dB		
		0001: 18.0dB		
		0010: 19.5dB		
		0011: 21.0dB	RW 1 is is g RW 0 	
		0100: 22.5dB		
		0101: 24.0dB		
		0110: 25.5dB		
		0111: 27.0dB		
11:8		1000: 28.5dB	RW 1	1001
	AMPIGUK	1001: 30.0dB	ĸw	1001
		1010: 31.5dB		
		1011: 33.0dB		
		1100: 34.5dB	is	
		1101: 36.0dB		
		1110: 37.5dB		
		1111: 39.0dB		
		AMP1 AGC Gain can be Read out when AGC0		
		enabled, and can be written and read out when AGC0 is		
	di	disabled.		
		Internal MIC Power Controlled by External MIC Plug		
7	IMICSHD	enable	D W	0
/	INICSIID	0: disable	IX VV	0
		1: enable		
6:3	-	Reserved	-	-
		AMP1 Gain Boost Range Select		
		000: +3.0dB	RW 10 RW 0 RW 0	
		001: +6.0dB		
		010: +9.0dB		
2:0	AMP0GR1	011: +12.0dB	RW	011
		100: +13.5dB		
		101: +15.0dB		
		110: +16.5dB		
		111: +18.0dB		

5.1.2.12 AGC_CTL1

AGC Control 1 Register

Offset=0x0C

Bits	Name	Description	Access	Reset
15:13	-	Reserved	-	-

		AGC0 Noise gate statistic time, (SCY = 1.36ms)		
		000: 4*SCY		
		001: 8*SCY		
		010: 16*SCY		
12:10	NGT0	011: 32*SCY	RW	001
		100: 64*SCY		
		101: 128*SCY		
		110: 256*SCY		
		111: 512*SCY		
		AGC0 Attack(Gain ramp-down) Time for every Gain		
		step, $(SCY = 683 \mu s)$		
		000: 1*SCY		
		001: 2*SCY	RW 04	
~ -		010: 4*SCY		
9:7	ATKT0	011: 8*SCY	RW	010
		100: 16*SCY		
		101: 32*SCY		
		110: 64*SCY	RW 001 RW 010 RW 001 RW 001	
		111: 128*SCY		
		AGC0 Decay(Gain ramp-up) Time for every Gain step,		
		(SCY = 5.46ms)		
		000: 16*SCY		
		001: 32*SCY	tep, RW	
6.1		010: 64*SCY		001
6:4	DUYIU	011: 128*SCY	ĸw	001
		100: 256*SCY		
		101: 512*SCY		
		110: 1024*SCY		
		111: 2048*SCY		
		AGC0 RC filter cutoff frequency select		
		00 :207Hz		
3:2	CMR0	01: 414Hz	RW	10
		10 : 828Hz		
		11 : 1.65kHz		
		AGC0 sense Cycle select		
		00 :341µs		
1:0	SCY0	01: 683µs	RW	10
		10 :1366µs		
		11 :2732us		

5.1.2.13 AGC_CTL2

AGC Control 2 Register

Offset=0x0D

Bits	Name	Description	Access	Reset

		AGC0 AMP1 Target level select at AMP2GR=+6dB		
		000: -42dBFS		
		001: -39dBFS		
		010: -36dBFS		
15:13	TARGL0	011: -33dBFS	RW	100
		100: -30dBFS		
		101: -27dBFS		
		110: -24dBFS		
		111: -21dBFS		
		AGC0 Noise Gate Threshold select at +28.5dB Gain		
		(Peak sense)		
		000: -27dBFS		
		001: -30dBFS		100 100 011 0 - 0 - 0 0 - 0 0 0 0 0 0 0 0 0 0 0 0 0
		010: -33dBFS		
12:10	NGTHSEL0	011: -36dBFS	RW	011
		100: -39dBFS		
		101: -42dBFS		
		110: -45dBFS		
		111: -51dBFS		
		ADC MIC to PA Path differential compensation enable		
9	MICAAEN	0: Disable	RW	0
		1: Enable		
8	-	Reserved	-	-
		AGC0 input source select		
7	RMSINSEL0	0: Left	RW	0
		1: Right		
6	-	Reserved	-	-
		AGC0 Noise Gate maintain current Gain or keep		
5	NCCLENO	silence	DW	0
2	NGSLENU	0: maintain current Gain	KW	0
		1: keep silence		
		AGC0 Noise Gate function enabled		
4	NGTEN0	0: disabled	RW	0
		1: enabled		
		AGC0 Gain change at zero-cross enabled		
3	ZEROC0	0: disabled	RW	0
		1: enabled		
		AGC0 Gain_con gain reset function enabled		
2	GREN0	0: disabled	RW	0
		1: enabled		
		AGC0 Left channel Enabled		
1	AGC0LEN	0: disabled	RW	0
		1: enabled		

		AGC0 Right channel Enabled		
0	AGC0REN	0: disabled	RW	0
		1: enabled		

5.1.2.14 ADC_ANALOG0

ADC Analog 0 Register

Offset=0x0E

Bits	Name	Description	Access	Reset
		IVSRMS bias tune		
Bits 15:13 12: 8 7: 5 4:3 2:0		000: -25%		
		001: -18.75%		
		010: -12.5%		
15:13 12: 8 7: 5 4:3	IVSRMSTN	011: -6.25%	RW	100
		100: 0% (Baseline value 2µA)		
		101: +6.25%		
		110: +12.5%		
		111: +18.75%		
12:8	-	Reserved	-	-
		The bias current select for OPAD1 in A/D:		
		000: 3µA		
12: 8 7: 5		001: 4µA		Reset 100 - 011 01 01 01
		010: 5µA		
	ODDC1	011: 6µА	DUV	
/: 5	OPBCI	100: 7µA	KW	011
		101: 8µA		
		100: 9µA		
		110: 10µA		
12: 8 7: 5 4:3		111: 11µA		
		The bias current select for OPAD2/3 in A/D:		
15:13 12: 8 7: 5 4:3 2:0		00: 2µA		
	OPBC23	01: 3µA	RW	01
		10: 4µA		
		11: 5µA		
		Audio A/D Voltage Reference bias current select:		
		000: 2µA		
		001: 3µA		
2:0	VRDABC	010: 4µA	RW	001
		110: 8μΑ		
		111: 9µA		

5.1.2.15 ADC_ANALOG1

ADC Analog 1 Register Offset=0x0F

Bits	Name	Description	Access	Reset
		Audio A/D LPF bias current select:		
		000: 3.0µA		
		001: 3.5μΑ		
		010: 4.0μΑ		
15:13	LPFBC	011: 4.5µA	RW	100
		100: 5.0µA		
		101: 5.5µA		
		110: 6.0μΑ		
		111: 6.5µA		
		FD LPF BUF OP bias current select:		
		00: 4µA		
12:11	LPFBUFBC	01: 5µA	RW	01
		10: бµА		
		11: 7µA		
		ADC Total Bias Tune		
10	ADCBIAS	0: Normal	RW	0
		1:+50%		
9:8	-	Reserved	-	-
		MIC Preamp FDOP1 bias current select :		
		00: 3µA		
7:6	FD1BC	01: 4µA	RW	01
		10: 5µA		
		11: 6µА		
		MIC Preamp FDOP2 bias current select :		
		00: 2µA		
5:4	FD2BC	01: 3µA	RW	01
		10: 4µA		
		11: 5µA		
		MIC Preamp FDOP2 bias current select :		
		00: 2µA		
3:2	FD1BUFBC	01: 3µA	RW	01
		10: 4µA		
		11: 5µA		
		FM Pre-amplifiers bias current select:		
		00: 3µA		
1:0	FMBC	01: 4µA	RW	01
		10: 5µA		
		11: 6µА		

5.2 Audio Characteristics

The audio characteristics are measured under the following conditions: AVCC = 2.9V, VCC = 3.1V, VDD = AVDD = 1.8V, Vref = 1.5V.

When testing DAC+PA or PA, a 16Ohm or 32Ohm load resistor is applied.

5.2.1 DAC+PA

Characteristics	Min	Тур	Max	Unit
Noise		12		μV
SNR		93.3		dB
SNR(A-Weighting)		96.8		dB
Dynamic Range (-48dB Input)		90.7		dB
Dynamic Range (A-Weighting, -48dB Input)		94		dB
THD+N (0dB Input)		-80	-75	dB
Max Amp (0dB Input)		540		mV
Max Power		18.2		mW
Interchannel Icolotion (11/11, 0dD sine wave Input)		-73/-67		dD
interchanner isolation (ikriz, odb sine wave input)		(Lmute/Rmute)		uВ

Table 5-5 DAC + Direct Drive PA characteristics

Table 5-6 DAC + Non-Direct Drive PA @FS=48K characteristics

Characteristics	Min	Тур	Max	Unit
Noise		11		μV
SNR		93.5		dB
SNR(A-Weighting)		96.4		dB
Dynamic Range (-48dB Input)		90.6		dB
Dynamic Range (A-Weighting, -48dB Input)		93.5		dB
THD+N (0dB Input)		-81	-76	dB
Max Amp (0dB Input)		535		mV
Max Power		17.9@220µF		mW
Interchannel Icolotion (11/11z, 0dD Sine wave Input)		-82/-70		dD
interchannel isolation (ikriz, 0dB Sine wave input)		(Lmute/Rmute)		uВ

Figure 5-3 shows the frequency Response of DAC @ INPUT AMP = 0dB & load = 16R:

Figure 5-3 Frequency Response of DAC

Figure 5-4 DAC FFT response

5.2.2 PA

 Table 5-7 Non-Direct Drive PA characteristics

Characteristics	Min	Тур	Max	Unit
Noise		15		μV
SNR		92.4		dB
Dynamic Range		92.3		dB
THD+N		-84.2	-77	dB
Output Common Mode Voltage		1.5		Vrms
Full Scale Output Valtage 60dB TUD+N		0.596Vrms		Vrma
Full Scale Output Voltage@-60dB THD+N		(1.785Vpp)		VIIIIS
Output Power @16.5Ohm		22.24		mW

Figure 5-5 below is the frequency Response of the Non-direct Drive PA @1.6Vpp input:

Figure 5-5 Frequency Response

Figure 5-6 gives the THD+N vs. INPUT AMP Curve of the Non-direct Drive PA:

Figure 5-6 THD+N vs. INPUT AMP Curve

Characteristics	Min	Тур	Max	Unit	
Noise		15		μV	
SNR		92.5		dB	
Dynamic Range		92		dB	
THD+N		-84.5	-78	dB	
Output Common Mode Voltage		1.5		Vrms	
Full Scale Output Voltage@-60dB THD+N		0.609Vrms		Vrms	
		(1.759Vpp)			
Output Power @16Ohm		23.2		mW	

Table 5-8 Direct Drive PA Characteristics

Figure 5-7 below is the Frequency Response of Direct Drive PA @1.6Vpp input:

Figure 5-7 Frequency Response Figure 5-8 is the THD+N vs. INPUT AMP Curve of the Direct Drive PA:

Figure 5-8 THD+N vs. Input AMP

5.2.3 ADC

Table 5-9 ADC characteristics

Test condition: Temp =25°C, AVCC = 3.0V, VCC = 1V, VDD = AVDD = 1.8V, Vref = 1.5V

@2Vpp, 1 kHz, sine wave input						
Characteristics	Min	Тур	Max	Unit		
Dynamic Range (-40 dBFS Input), unweighting		89.6@48k		dB		
Dynamic Range (-40 dBFS Input), weighting		91.5@48k		dB		
THD+N, unweighting		-85.5@48k		dB		
THD+N, weighting		-88.5@48k		dB		

5.3 PCM

5.3.1 PCM Interface

There are 3 PCM modules integrated: PCM0 for Master, PCM1 for BlueTooth, PCM2 for Baseband. These three PCMs support Tx and Rx, only work in slave mode, the clock runs up to 2.048MHz. Pulse Code Modulation (PCM) is a method of encoding an audio signal into digital format. PCM data can be Linear PCM(13~16bits), u-Law(8bits), A-Law(8bits). Long frame sync and short frame sync are supported. The Figure below gives a standard PCM transmission sequence.

5.3.2 Register List

Table 5-3	PCM IF	Controller	Registers Address	1
10000 5 5		controner	negiorer o municoo	

Name	Physical Base Address
PCM_IF	0xA0

Table 5-4 ADC Controller Registers

Offset	Register Name	Description
0x10	PCM0_CTL	PCM0 Control Register
0x11	PCM1_CTL	PCM1Control Register
0x12	PCM2_CTL	PCM2 Control Register
0x13	PCMIF_CTL	PCM Interface Control Register

5.3.3 Register Description

5.3.3.1 PCM0_CTL, PCM1_CTL, PCM2_CTL

PCM0/PCM1/PCM2 Control Register

PCM0_CTL	Offset = 0x10
DCM1 CTI	Offerst = 0x11

 $PCM1_CTL \qquad Offset = 0x11$

PCM2_CTL 0	Offset = 0x12	
------------	---------------	--

Bit(s)	Name	Description	Access	Reset
16:14	-	Reserved	-	-
		PCM Enable		
13	EN	0: Disable	RW	0
		1: Enable		
		Sign Extension Enable (only when 16-bit slots are		
		used).		
		0: Select zeros padding or audio gain.		
		1: Select sign extension.		
12	SEN	When writing the bit is 0, the unused bits are audio	RW	0
		gain for 13-bit linear sample and zeros padding for		
		8-bit compounded sample.		
		When writing the bit is 1, the unused bits are both		
		sign extension.		
		Sample Format		
11	SAMF	0: 8bit sample with 8 cycle slot duration	RW	0
		1: 8bit sample with 16 cycle slot duration		
		Inversion Enable.		
		0: Disable		
10	IVEN	1: Enable. RW		0
		When inversion is enabled, inversion is performed		
		on even bits of A-Law and all bits of u-Law		
9	-	Reserved	-	-

		PCM Frame Mode Select		
8	FRMS	0: Short Frame Sync Mode	RW	0
		1: Long Frame Sync Mode		
7:6	-	Reserved	-	-
		LSB or MSB First.		
5	IMED	0: MSB first	DW	0
3	LMFK	1: LSB first	ĸw	0
		When transmitting and receiving voice samples.		
4	-	Reserved	-	-
	DATO	PCM Data Output Mode.		
3		0: Normal Output	RW	0
		1: Force PCM_OUT to output 0		
		PCM Data Mode Select		
		000: u-Law(8-bit)		
		001: A-Law(8-bit)		
2:0	DATM	010: linear PCM(13-bit)	RW	0
		011: linear PCM(14-bit)		
		100: linear PCM(15-bit)		
		101: linear PCM(16-bit)		

5.3.3.2 PCMIF_CTL

PCM Interface Control Register

Offset = 0x13

Bit(s)	Name	Description	Access	Reset
15:13	-	Reserved	-	-
		PCM2OUT source select		
12	P2OSS	0:ADC Right Channel	RW	0
		1:PCM1IN(From BT)		
		PCM0OUT source select		
		0: voice recording when using MIC (MIC ADC		
		record + Baseband Voice from PCM2 in + Master	RW	
11	POOSS	keytone or/and music from PCM0 in)		0
		1: voice recording when using BT(BT voice from		
		PCM1 in + Baseband Voice from PCM2 in +		
		Master keytone or/and music from PCM0 in)		
10	-	Reserved	-	-
		PCM1OUT source select		
0	DIOCC	0:PCM2IN (from baseband)	DW	0
9	P1088	1:PCM2IN + PCM0IN (baseband + master RW		0
		keytone or/and music)		
8:0	-	Reserved	-	-

PCM0(for Master), PCM1(for BlueTooth), PCM2(for Baseband)

6 TWI Interface

6.1 Features

ATC2609 can be accessed by Master through a standard TWI (Two-Wire Interface), which allows Master to write commands to and read status from ATC2609 by accessing its registers. TWI only occupies two pins namely SCL (Serial Clock) and SDA (Serial Data), information is transmitted serially on SDA and clock is driven on SCL by Master. ATC2609 is a slave device controlled by Master, The transmission speed of TWI interface supports 400Kbps and 3.4Mbps, 8-bit address and 16-bit data width with MSB transmitted first.

A typical sequence of Writing 16-bit data to a register is shown in the Figure below. A start bit is generated by Master, followed by a slave address, then register address and 16-bit data. A SACK acknowledge signal will be given by ATC2609 after every byte address or data transmission. The transmission stops when Master sends a stop bit. All the 16-bit data should be written before the register is updated.

Figure 6-1 Writing 16-bit data to register through TWI bus

The Figure above shows a sequence of writing a 16-bit data 0xF080 to register 0x31, the slave address is 0xCA.

A typical 16-bit data read sequence is shown below. Firstly, Master writes slave address and register address to ATC2609. Then a start bit and the slave address is sent indicating a read sequence started. In the following 8-bit clock, Master reads data from ATC2609, during which Master sends a MACK signal every 8-bit data or address, mNACK signal will be sent to ATC2609 to stop the reading process, then Master generates a stop bit indicating the reading is completed.

Figure 6-2 Reading 16-bit data from register through TWI bus

The Figure above illustrates Master reads 16-bit data 0xF080 from register 0x31, the slave address is 0xCA.

6.2 Register List

Tuble 0 1 100 Hallfulle Register Biblen Huuress				
Block Name	Base Address			
TWSI_REGISTER	0xF8			

Table 6-1 TWI Interface Register Block Address

Table 6-2 TWI Register Offset

Offset	Register Name	Description
0x08	SADDR	TWI serial interface slave device register

6.3 Register Description

6.3.1 **SADDR**

Two-Wire Serial interface slave device address register Offset = 0x08

Bit(s)	Name	Description	Access	Reset
15:8	-	Reserved	-	-
7:1	SDA	Slave device address The register stores the slave device address used in slave mode.	RW	0b1100101
0	FTHM	Force to HS mode 0: Fast mode 1: High speed mode	RW	0x0

7 Power Management Unit

7.1 Features

The highly integrated Power Management Unit (PMU) in ATC2609 provides a full solution for the single cell lithium battery power system, the communication with Master is done through TWI interface. PMU consists of 6 DC-DCs, 10 LDOs, 12-bit multiplex ADC, one linear charging-management unit, Coulombmeter, and self-adaption power distribution control unit etc, automatically monitoring abnormal power conditions like overvoltage, overcurrent, undervoltage and overtemperature, etc.

The linear charging-management unit for Li-Ion battery adjusts the charging current automatically according to the battery's status, including trickle, CC (Constant Current) and CV (Constant Voltage) charging phase, with maximum charging current of 3A. Furthermore, it also supports overcharge protection and timeout protection, etc.

Self-Adaption Power Distribution (APDS) control module is an integrated unit inside PMU, which controls the power distribution and seamless power switching among BAT, VBUS and WALL to guarantee a stable power supply for the whole system. The minimum Standby current can be lower than 30µA. The input voltage of integrated 12-bit, 17-channel Analog-to-Digital converter (AuxADC) ranges from 0V to 3V, is used for detecting the voltage, current and temperature.

7.2 Module Description

7.2.1 DC-DC Module

Figure 7-1 ATC2609 Buck DC-DC circuit diagram

ATC2609 integrates 6 Buck DC-DCs: DC-DC0, DC-DC1, DC-DC2, DC-DC3, DC-DC4, SW_DC-DC.

All the 6 Buck DC-DCs are synchronized controlled and integrate internal MOSFET. For normal application, one inductor and two capacitors should be applied outside. The recommended components selection is listed in Table 7-1 below.

Buck	Vin (V)	Vout (V)	Adjustable Voltage Step (mV)	Imax (A)	L	Cin (µF)	Cout (µF)
DC-DC0	3.0~5.5	0.6~2.2	6.25	2	1.0μH@DCR<0.0 3Ohm I>2A	10//0.1	10//0.1
DC-DC1	3.0~5.5	0.6~2.2	6.25	3	1.0μH@DCR<0.0 3Ohm I>3A	10//0.1	10//0.1
DC-DC2	3.0~5.5	0.6~2.2	6.25	2	1.0μH@DCR<0.0 3Ohm I>2A	10//0.1	10//0.1
DC-DC3	3.0~5.5	0.6~3.3	25	1.2	1.0µH@DCR<0.0 3Ohm I>1.2A	10//0.1	10//0.1
DC-DC4	3.0~5.5	0.6~2.2	6.25	2	1.0μH@DCR<0.0 3Ohm I>2A	10//0.1	10//0.1
SW_DC-DC	-	-	-	3	4.7μH@DCR<0.0 3Ohm I>3A	10//0.1	10

Table 7-1 External com	ponents selection	for DC-DCs
------------------------	-------------------	------------

Note: "10//0.1" in table above means paralleled 10\muF and 0.1\muF capacitors. The Efficiency characteristics of these DC-DCs are shown in Figure 7-2

DCDC Efficiency vdcin=3.8V

Figure 7-2 ATC2609 Buck DC-DCs Efficiency curve

7.2.2 LDO Module

ATC2609 integrates 10 LDOs, their specifications are listed below in Table 7-2. LDO support output overvoltage, overcurrent and undervoltage protection. Whenever the output voltage exceeds the overvoltage range, LDOs will generate an overvoltage interrupt, besides, the LDOs overvoltage protection can be enabled or disabled through the relevant register. Overcurrent and Undervoltage are the same mechanism.

Table 7-2 LDO regulators specifications					
Regulator	Vin (V)	Vout(V)	Imax(mA)	Cin(µF)	Cout(µF)
LDO0	3.0~5.5	2.3~3.4	500	0.1//2.2	0.1//2.2
LDO1	3.0~5.5	2.3~3.4	500	0.1//2.2	0.1//2.2
LDO2	3.0~5.5	2.3~3.4	500	0.1//2.2	0.1//2.2
LDO3	3.0~5.5	0.7~3.3	50	0.1//1.0	0.1//1.0
LDO4	3.0~5.5	0.7~3.3	200	0.1//1.0	0.1//1.0
LDO6	3.0~5.5	0.85~3.3	200	0.1//1.0	0.1//1.0
LDO7	3.0~5.5	0.7~3.3	200	0.1//1.0	0.1//1.0
LDO8	3.0~5.5	0.7~3.3	200	0.1//1.0	0.1//1.0
LDO9	3.0~5.5	2.6~3.3	25	0.1//1.0	0.1//1.0
LDO10	3.0~5.5	1.8	20	0.1//1.0	0.1//1.0

Notes: LDO9 and LDO10 are used internally for SVCC and RTCVDD separately

7.2.3 Charger Module

ATC2609 integrates two constant current and constant voltage chargers, one is switch charger the other is linear charger, they provide battery detection, trickle current charging and it can adjust the charging current according to system power consumption. When an external adaptor is plugged in, the battery's existence is detected by ATC2609 PMU according to the voltage on BAT PIN, once SYSPWR is detected higher than battery voltage (VBAT), the charger will be enabled by software and ATC2609 PMU will manage the charging process automatically. Charging current can be configured through register (max 3A) and the real-time charging current can be read by the ADC charging current register.

The IC internal temperature and battery temperature are monitored throughout the charging process, once the temperature is detected higher or lower than the standard value, an interrupt signal will be sent, then software will take measures and charging process will be paused. The battery's temperature is measured by the circuit shown in Figure 7-3 below.

Figure 7-3 ATC2609 Battery Temperature Detecting Diagram

7.2.4 APDS Module

Figure 7-4 APDS Module Diagram

ATC2609 APDS (Adaptive Power Distribute System) block diagram is shown in Figure 7-4 above. SYSPWR is a public power supply node for all the DC-DCs and LDOs. PMU gets power from BAT, VBUS and WALL and then supplies to the public node SYSPWR through a diode respectively in the IC. To prevent current from flowing from VBUS to SYSPWR in OTG application, an enable control pin (EN) is applied to the diode between VBUS and SYSPWR. When this diode is disabled, the path from BUS to SYSPWR will be cut off completely.

PMU needs to supply high power, in order to reduce internal thermal dissipation, two external

MOSFET PMOS1 and PMOS2 are applied to bypass big current, see in Figure 7-4 above.

Voltages on BAT, VBUS, WALL and SYSPWR nodes as well as the current flows through each diode are monitored since the system is powered on. Once the output voltage of BAT exceeds the upper or lower settings, PMU will send BAT overvoltage or undervoltage interrupt to INTC module. When the current through BAT path is detected higher than the set value, a BAT overcurrent interrupt will be sent to INTC module, what's more, if this current exceeds overcurrent shut-off value, the power will be forced to shut off to protect IC. If VBUS and WALL are detected overvoltage, undervoltage or overcurrent, the same process will be triggered as BAT does.

7.2.5 Power Modes

According to the application, the following 5 types of power modes are distinguished:

- S1-Working Mode: In Working Mode, Master can work normally including its kernel and IOs, that is to say, LDO2 and LDO3 needed by the Master and ATC2609 must work properly. LDO2, LDO3, LDO9, LDO10 and their related control logic circuits should work. Other regulators can be either on or off. This state is called S1.
- **S2-Standby Mode**: Both Master IC's kernel and IOs are shut off in this mode, LDO2 and LDO3 are powered off accordingly, LDO9 and LDO10 is still on, essential information is saved in DDR for fast start-up, DC-DC2 should work normally. The communication between Master and ATC2609 is disabled. We called this state S2.
- **S3-Sleep Mode**: When the device is not used for a long time, the system will enter S3 state, which is a low power state. In this case, DDR will be power down, but SYSPWR still supplies the system. Only LDO9 and LDO10 is on, others are all power off.
- **S3A-Relaxation Mode**: this mode is an intermediate state, its external power is same with S3, but a little different internally. This working mode is used to sustain the function of ADC, after a period of time the battery enters a relaxation state, then the coulometer level can be updated.
- **S4-Deep Sleep Mode**: In this mode, the power consumption is reduced more deeply than standby mode, LDO9 is power down, only LDO10 is on.

Wakeup elements:

The system can be woke up in different conditions, which involves several wake up elements including ONOFF, ALARM, WKIRQ, RESET, REM_CON, USB, WALL, HDSW, IR. In S2 and S3, each of the elements above can wake up the system. In S4, SVCC is shut off, only RTCVDD exists, so only WKIRQ, REM_CON and IR cannot wake up the system, others can wake up the system. Either long or short press on ONOFF button can wake up the system, which can be enabled or disabled by the register. In S1 mode, the system can be configured into S2, S3 or S4 by software, setting the related bits EN_S1, EN_S2, EN_S3, shown in Table 7-3 below.

Power State	EN_S1	EN_S2	EN_S3	T_ACK
S4	0	0	0	1
S3	0	0	1	1
S3A	0	0	Х	0
S2	0	1	Х	X
S1	1	X	X	X

Table 7-3 Power State changed by Softwar
--

Note: When the system need to go into S2 from S1, set EN_S2=1 first, then write 0 to EN_S1, to

switch the system from S1 mode to S2.

Overcurrent protection:

If one of the LDOs is overcurrent, and overcurrent interrupt is sent, PWROK will be pulled down first, and then it will enter Standby state by setting EN_S2, EN_S3 and T_ACK.

If overcurrent is detected on BAT, WALL or VBUS, and its overcurrent shut off function is enabled, then it will entering Standby state according to the settings of EN_S2, EN_S3 and T_ACK.

Overtemperature protection:

When the temperature in IC exceeds the settings, and its overtemperature protection is enabled, then the system will enter Standby state by setting EN_S2, EN_S3 and T_ACK automatically.

7.2.6 POR and Power ON/OFF Sequence Module

Figure 7-5 Power on Sequence

Figure 7-5 above shows ATC2609 power on sequence, the power of BAT or WALL or VBUS is turned on firstly, RTCVDD and SVCC will be generated closely after that. Then ATC2609's core voltage (1.8V) and Master's core voltage (1.0V) will be applied. The high-voltage supply for ATC2609 and Master will be generated afterwards. At last, when all these power is stable, the POR

signal will be sent to Master, which indicates the Master starts to run. The timing parameter is of power on sequence is listed in Table 7-4 below.

Parameter	Min	Max
t1	35ms	
t2	56ms	
t3	6ms	48ms
t4	40ms	

Table 7-4 Timing Parameter of Power on Sequence

If the system is set to power down by software, Master will send commands to ATC2609, on receiving the commands.

7.2.7 ONOFF & Reset Module

Figure 7-6 ONOFF & Reset Module Diagram

In the PMU, ONOFF and Reset multiplex one PIN (ONOFF/RESET), shown in figure 7-6. Either ONOFF or RESET button is pressed down, SYSRST or SYSONOFF signal will be high and generates a trigger signal to PMU through ONOFF/RESET pin accordingly. If the RESET and ONOFF buttons are pressed down at the same time, all the registers in RTCVDD voltage domain will be reset.

Long press on ONOFF button for more than a setting period (6s, 8s, 10s or 12s) will trigger a same function like P_RESET to reset the whole system.

7.2.8 Coulombmeter

Built-in Coulombmeter supports accurate battery capacity monitor.

7.3 Register List

Table 7-5 PMU Block Address

Name	Base Address
PMU	0x00

Offset	Register Name	Description
0x00	PMU_SYS_CTL0	PMU SYSTEM CONTROL Register0
0x01	PMU_SYS_CTL1	PMU SYSTEM CONTROL Register1
0x02	PMU_SYS_CTL2	PMU SYSTEM CONTROL Register2
0x03	PMU_SYS_CTL3	PMU SYSTEM CONTROL Register3
0x04	PMU_SYS_CTL4	PMU SYSTEM CONTROL Register4
0x05	PMU_SYS_CTL5	PMU SYSTEM CONTROL Register5
0x06	PMU_SYS_CTL6	PMU SYSTEM CONTROL Register6
0x07	PMU_SYS_CTL7	PMU SYSTEM CONTROL Register7
0x08	PMU_SYS_CTL8	PMU SYSTEM CONTROL Register8
0x09	PMU_SYS_CTL9	PMU SYSTEM CONTROL Register9
0x0A	PMU_BAT_CTL0	PMU BAT CONTROL Register0
0x0B	PMU_BAT_CTL1	PMU BAT CONTROL Register1
0x0C	PMU_VBUS_CTL0	PMU VBUS CONTROL Register0
0x0D	PMU_VBUS_CTL1	PMU VBUS CONTROL Register1
0x0E	PMU_WALL_CTL0	PMU WALL CONTROL Register0
0x0F	PMU_WALL_CTL1	PMU WALL CONTROL Register1
0x10	PMU_SYS_PENDING	PMU SYSTEM Pending Register
0x11	PMU_APDS_CTL0	PMU APDS CONTROL Register0
0x12	PMU_APDS_CTL1	PMU APDS CONTROL Register1
0x13	PMU_APDS_CTL2	PMU APDS CONTROL Register2
0x14	PMU_CHARGER_CTL	PMU CHARGER CONTROL Register
0x16	PMU_SWCHG_CTL0	PMU SW_CHARGER CONTROL Register0
0x17	PMU_SWCHG_CTL1	PMU SW_CHARGER CONTROL Register1
0x18	PMU_SWCHG_CTL2	PMU SW_CHARGER CONTROL Register2
0x19	PMU_SWCHG_CTL3	PMU SW_CHARGER CONTROL Register3
0x1A	PMU_SWCHG_CTL4	PMU SW_CHARGER CONTROL Register4
0x1B	PMU_DC_OSC	PMU DC-DC OSC CONTROL Register
0x1C	PMU_DC0_CTL0	PMU DC-DC0 CONTROL Register0
0x23	PMU_DC1_CTL0	PMU DC-DC1 CONTROL Register0
0x2A	PMU_DC2_CTL0	PMU DC-DC2 CONTROL Register0
0x31	PMU_DC3_CTL0	PMU DC-DC3 CONTROL Register0
0x79	PMU_DC4_CTL0	PMU DC-DC4 CONTROL Register0
0x38	PMU_DC_ZR	PMU DC-DC Status Register
0x39	PMU_LDO0_CTL0	PMU LDO0 CONTROL Register0
0x3B	PMU_LDO1_CTL0	PMU LDO1 CONTROL Register0
0x3D	PMU_LDO2_CTL0	PMU LDO2 CONTROL Register0
0x3F	PMU_LDO3_CTL0	PMU LDO3 CONTROL Register0
0x41	PMU_LDO4_CTL0	PMU LDO4 CONTROL Register0

Table 7-6 PMU Controller Registers

0x45	PMU_LDO6_CTL0	PMU LDO6 CONTROL Register0
0x47	PMU_LDO7_CTL0	PMU LDO7 CONTROL Register0
0x49	PMU_LDO8_CTL0	PMU LDO8 CONTROL Register0
0x4B	PMU_LDO9_CTL	PMU LDO9 CONTROL Register0
0x4C	PMU_OV_INT_EN	PMU OVER VOLTAGE INT ENABLE Register
0x4D	PMU_OV_STATUS	PMU OVER VOLTAGE Status Register
0x4E	PMU_UV_INT_EN	PMU UNDER VOLTAGE INT ENABLE Register
0x4F	PMU_UV_STATUS	PMU UNDER VOLTAGE Status Register
0x50	PMU_OC_INT_EN	PMU OVER CURRENT INT ENABLE Register
0x51	PMU_OC_STATUS	PMU OVER CURRENT Status Register
0x52	PMU_OT_CTL	PMU OVER TEMPERTURE CONTROL Register
0x53	PMU_CM_CTL0	PMU Coulometer Module CONTROL Register
0x80	PMU_PWR_STATUS	PMU POWER Status Register
0x81	PMU_S2_PWR	PMU S2 POWER CONTROL Register
0x82	CLMT_CTL0	PMU Coulometer Module CONTROL Register
0x83	CLMT_DATA0	PMU Coulometer Module DATA Register0
0x84	CLMT_DATA1	PMU Coulometer Module DATA Register1
0x85	CLMT_DATA2	PMU Coulometer Module DATA Register2
0x86	CLMT_DATA3	PMU Coulometer Module DATA Register3
0x56	PMU_ADC12B_I	PMU BATIADC Register
0x57	PMU_ADC12B_V	PMU BATVADC Register
0x89	CLMT_OCV_TABLE	PMU Coulometer Module OCV TABLE Register
0x8A	CLMT_R_TABLE	PMU Coulometer Module R TABLE Register

7.4 Register Description

7.4.1 PMU_SYS_CTL0

PMU_SYS_CTL0 Register (RTCVDD) (default 0xE055)

Offset = 0x00

Bit(s)	Name	Description	Access	Reset
		VBUS wake up enable, when exceeds the threshold		
15	LISD WIN EN	voltage	RW	0x1
15	USB_WK_EN	1:VBUS can wake up		
		0:VBUS can't wake up		
	WALL_WK_EN	WALL wake up enable, when exceeds the threshold		
14		voltage	RW	0x1
14		1:WALL can wake up		
		0:WALL can't wake up		
13	ONOFF_LONG_	ONOFF long press wake up enable	DW	0 _w 1
	WK_EN	1:ONOFF can wake up	ĸw	UXI

		0:ONOFF can't wake up		
	ONOEE SHOPT	ONOFF short press wake up enable		
12	UNOFF_SHOKI	1:ONOFF can wake up	RW	0x0
		0:ONOFF can't wake up		
		WKIRQ wake up enable		
11	WKIKQ_WK_E	1:WKIRQ can wake up	RW	0x0
	N	0:WKIRQ can't wake up		
		Restart enable		
		1:enable		
1		0:default		
10	BEGEADT ENI	the default value is 0, when it is set to 1 (if WALL or	DW	0.0
10	KESIAKI_EN	VBUS exists, WALL or VBUS wakeup will be HW	KW	0x0
		disabled), the system will enter Standby mode		
1		automatically, then wakes up automatically 2sec later,		
l		this bit will be cleared to 0 at the same time.		
	DEM CON WW	REM_CON button pressed wake up enable		
9	REM_CON_WK	1:Rem_con can wake up	RW	0x0
	_ ^{EN}	0:Rem_con can't wake up		
		Alarm wake up enable		
8	ALAKM_WK_E	1:Alarm can wake up	RW	0x0
	N	0:Alarm can't wake up		
		Hard switch wake up enable		
7	HDSW_WK_EN	0:No	RW	0x0
		1:Yes		
		Reset wake up enable		
6	RESET_WK_EN	0:No	RW	0x1
		1:Yes		
		IR wake up enable		
5	IR_WK_EN	0:No	RW	0x0
		1:Yes		
		VBUS wake up threshold voltage		
		00:4.05V		
4:3	VBUS_WK_TH	01:4.20V	RW	0x2
		10:4.35V		
		11:4.50V		
		WALL wake up threshold voltage		
		00:4.05V		
2:1	WALL_WK_TH	01:4.20V	RW	0x2
		10:4.35V		
		11:4.50V		
		ONOFF multiplex enable		
0	ONOFF_MUXK	0:Disable (No P_RESET key)	RW	0x1
	EY_EN	1:Enable (With P_RESET key)		

7.4.2 PMU_SYS_CTL1

PMU_SYS_CTL1 Register (RTCVDD) (default 0x000E) Offset = 0x01

Bit(s)	Name	Description	Access	Reset
		VBUS wakeup flag		
15	USB_WK_FLAG	1:VBUS wakeup	R	0x0
		0:No VBUS wakeup		
		WALL wakeup flag		
14	WALL_WK_FLAG	1:WALL wakeup	R	0x0
		0:No WALL wakeup		
	ONOFE LONG WK	ONOFF long press wakeup flag		
13	UNOFF_LONG_WK_	1:ONOFF long press wakeup	R	0x0
	FLAG	0:No ONOFF long press wakeup		
	ONOFE CHOPT WK	ONOFF short press wakeup flag		
12	UNUFF_SHUKI_WK	1:ONOFF short press wakeup	R	0x0
	_FLAG	0:No ONOFF short press wakeup		
		WKIRQ wakeup flag		
11	WKIRQ_WK_FLAG	1: WKIRQ wakeup	R	0x0
		0: No WKIRQ wakeup		
		RESTART wakeup flag		
10	RESTART_WK_FLAG	1: RESTART wakeup	R	0x0
		0: No RESTART wakeup		
	DEM CON WIZ ELA	REM_CON wakeup flag		
9	REM_CON_WK_FLA	1: REM_CON wakeup	R	0x0
	G	0: No REM_CON wakeup		
		Alarm wakeup flag		
8	ALARM_WK_FLAG	1:Alarm wakeup	R	0x0
		0: No Alarm wakeup		
		HDSW wakeup flag		
7	HDSW_WK_FLAG	1:HDSW wakeup	R	0x0
		0: No HDSW wakeup		
		reset wakeup flag		
6	RESET_WK_FLAG	1:Reset wakeup	R	0x0
		0: No reset wakeup		
		IR wakeup flag		
5	IR_WK_FLAG	1:IR wakeup	R	0x0
		0: No IR wakeup		
		Low power state enter S4 voltage setting		
4.2		00:2.9V		
	IB S4	01:3.0V	B W	$0 \mathbf{v}^1$
4.3		10:3.1V	IX VV	UXI
		11:3.3V		
		When the system is in S1, S2, S3A, S3 and the		

		relative transition state, if the Battery voltage is lower than settings and there is no VBUS		
		and WALL detected, the system enters S4		
		directly.		
		Low Power state enter S4 enable (including		
2	IR SA EN	enable detection)	RW	0x1
2	LD_34_EIN	0:Disable		
		1:Enable		
		Internal 32kHz clock enable		
1	ENRTCOSC	0:disable	RW	0x1
		1:enable		
		Enter S1state enable (this bit will be cleared to		
0	ENL C1	0 when leaving S1)	DW	0.0
		0:Do not enter S1	IX VV	UXU
		1:Enter S1		

7.4.3 PMU_SYS_CTL2

PMU_SYS_CTL2 Register (RTCVDD) (default 0x0680)

Offset = 0x02

Bit(s)	Name	Description	Access	Reset
		ONOFF key is pressed or not		
15	ONOFF_PRESS	0:ONOFF key is not pressed	R	0x0
		1:ONOFF key is pressed		
		ONOFF short press pending		
14	ONOTE SUODT DDESS	0:No ONOFF short press happen	DW	Reset 0x0 0x0 0x0 0x0 0x0 0x0
14	UNUFF_SHUKI_PKESS	1: ONOFF short press happen	IX VV	UXU
		Write 1 clear to 0		
		ONOFF long press pending		
12	ONOEE LONG DRESS	0:No ONOFF long press happen	DW	0x0
15	ONOFF_LONG_PRESS	1:ONOFF long press happen	IX VV	
		Write 1 clear to 0		
		ONOFF key long or short press interrupt		
12	ONOEE ISD INT EN	enable	DW	0.20
12		0:disable	IX VV	0x0
		1:enable		
		ONOFF key press time settings		
		00:		
11:10		60 ms < t < 0.5 s; judged as short press;		
	ONOFF_PRESS_TIME	$t \ge 0.5s$, judged as long press;	RW	0x01
		01:		
		60 ms < t < 1 s, judged as short press;		
		$t \ge 1$ s, judged as long press;		

		10:		
		60ms < t < 2s, judged as short press;		
		$t \ge 2s$, judged as long press;		
		11:		
		60ms < t < 4s, judged as short press;		
		$t \ge 4s$, judged as long press;		
		ONOFF long press reset function enable		
9	ONOFF_RESET_EN	0:disable	RW	0x1
		1:enable		
		Long press ONOFF send Reset time		
		selection		
0.7	ONOFF_RESET_TIME_	00:6s	DW	0.01
8:7	SEL	01:8s	RW	0x01
		10:10s		
		11:12s		
		S2 timer enable		
		0:Disable		
		1:Enable		
6	S2 TIMER EN	When S2timer is enabled, once the system	RW	0x0
-		enters S2 state. S2timer starts to count.		
		when it counts up the system will enter		
		S3A state.		
		S2timer		
		000.6min		
		001:16min		
		010:31min		
5.3	S2TIMER	011:61min	RW	0x0
5.5	021 INIER	100.91min	1011	0.00
		101:121min		
		110:151min		
		111:181min		
		ONOFF key press happen pending		
		0:No ONOFF key press happen		
2	ONOFF_PRESS_PD	1:ONOFF key press happen	RW	0x0
		Writing 1 clears to 0		
		ONOFF key press interrupt enable		
1	ONOFF PRESS INT EN	0:disable	RW	0x0
-		1:enable		0110
		PMU simulation acceleration mode		
		enable		
0	PMU_A_EN	0:diasble	RW	0x0
		1:enable		
5:3 2 1 0	S2TIMER ONOFF_PRESS_PD ONOFF_PRESS_INT_EN PMU_A_EN	S3A state.S2timer000:6min001:16min010:31min010:31min011:61min100:91min101:121min110:151min111:181minONOFF key press happen pending0:No ONOFF key press happen1:ONOFF key press happenWriting 1 clears to 0ONOFF key press interrupt enable0:disable1:enablePMU simulation acceleration modeenable0:diasble1:enable	RW RW RW	0x0 0x0 0x0 0x0

7.4.4 PMU_SYS_CTL3

PMU_SYS_CTL3 Register (RTCVDD) (default 0x0000) Offset = 0x03

Bit(s)	Name	Description	Access	Reset
		Enter S2 state enable		
15	EN_S2	0:do not enter S2	RW	0x0
		1:enter S2		
		Enter S3 state enable		
14	EN_S3	0:do not enter S3	RW	0x0
		1:enter S3		
		S3 timer enable		
		0:Disable		
		1:Enable		0x0
13	S3_TIMER_EN	If S3 timer is enabled, when the system	RW	0x0
		enters S3 state, S3 timer starts to count,		
		when it counts up, the system will enter		
		S4 state.		
		S3timer		
		000:6min		
		001:16min		0x0 0x0 0x0
		010:31min		
12:10	S3TIMER	011:61min	RW	0x0
		100:91min		
		101:121min		
		110:151min		
		111:181min		
9:0	-	Reserved	-	-

7.4.5 PMU_SYS_CTL4

PMU_SYS_CTL4 Register (RTCVDD) (default 0xB000)

Offset = 0x04

Bit(s)	Name	Description	Access	Reset
15:8	-	Reserved	-	-
7:5		AUXIN1 Multiplexing		
		000: AUXIN1		
		001: SGPIO2 (<1MHz)		
	AUXIN1	010: WKUP	RW	0x0
		011: IR		
		100: 32kHz clock is sent		
		Others: Reserved		
4:2	AUXIN0	AUXIN0 Multiplexing	RW	0x0

		000: AUXIN0		
		001: SGPIO1 (<1MHz)		
		010: WKUP		
		011: IR		
		100: 32kHz clock is sent		
		Others: Reserved		
		REMCON Multiplexing		
		00: REMCON		
1:0	REMCON	01: SGPIO0 (<1MHz)	RW	0x0
		10: WKUP		
		11: IR		

7.4.6 PMU_SYS_CTL5

PMU_SYS_CTL5 Register (RTCVDD) (default 0x0180)

Offset = 0x05

Bit(s)	Name	Description	Access	Reset
		WKIRQ pending		
15	WILDO DD	0:WKIRQ is not active	DW	00
15	WKIKQ_PD	1:WKIRQ is active	ĸw	0X0
		Writing 1 clears to 0		
		WKIRQ types		
		00:High level active		
14:13	WKIRQ_TPYE	01:Low level active	RW	0x0
		10:Rising edge-triggered		
		11:Falling edge-triggered		
		WKIRQ interrupt enable		
12	WKIRQ_INT_EN	0: disable	RW	0x0
		1: enable		
		REMCON pending		
11	DEMCON DD	0: REMCON is not pressed	DW	0.0
11	REMCON_PD	1: REMCON is pressed	KW	0x0
		Writing 1 clears to 0		
		Rem_con interrupt enable		
10	REMCON_INT_EN	0: Disable	RW	0x0
		1: Enable		
		Rem_con wakeup detection enable		
9	REMCON_DECT_EN	0: Disable	RW	0x0
		1:Enable		
		VBUS wakeup detection enable		
8	VBUSWKDTEN	0: Disable	RW	0x1
		1:Enable		
7	WALLWKDTEN	WALL wakeup detection enable	RW	0x1

		0: Disable		
		1:Enable		
		IBIAS		
		00:lower		
6:5	IBIAS	01:low	RW	0x0
		10:high		
		11:higher		
4:0	-	Reserved	-	-

7.4.7 PMU_SYS_CTL6

PMU_SYS_CTL6 Register (RTCVDD) (default 0x0000)

Offset = 0x06

Bit(s)	Name	Description	Access	Reset
15:11	-	Reserved	-	-
		SGPIO[2:0] In/Out selection		
10:8	SGPIO_FUN_SEL	0:Input	RW	0x0
		1:Output		
7:3	-	Reserved	-	-
2:0	SGPIO_DATA	SGPIO[2:0] DATA	RW	0x0

7.4.8 PMU_BAT_CTL0

PMU_BAT_CTL0 Register (RTCVDD) (default 0x5680)

Offset = 0x0A

Bit(s)	Name	Description	Access	Reset
		BAT Undervoltage interrupt voltage setting		
		00:3.1V		
15:14	BAT_UV_VOL	01:3.3V	RW	0x1
		10:3.4V		Reset0x10x10x6
		11:3.5V		
		BAT overvoltage interrupt voltage setting		
		00:4.3V		0 v 1
13:12	BAT_OV_VOL	01:4.4V	RW	0x1
		10:4.5V		
		11:4.8V		
		BAT overcurrent interrupt current setting		
		0000:200mA		
11:8	DAT OC SET	0001:300mA	DW	06
	BAI_OC_SEI	0010:400mA	ĸw	UXO
		0011:500mA		
		0100:600mA		

		0101:700mA		
		0110:800mA		
		0111:900mA		
		1000:1000mA		
		1001:1200mA		
		1010:1400mA		
		1011:1600mA		
		1100:1800mA		
		1101:2000mA		
		1110:2200mA		
		1111:2500mA		
		The current detected is flowing from BAT to		
		SYSPWR through the diode, overcurrent signal		
		debounce time is 1ms.		
		BAT overcurrent shutoff current setting		
		00:1000mA		
7.6	BAT_OC_SHUTO	01:2000mA	DW	02
7.0	FF_SET	10:2500mA	Κ W	0X2
		11:3000mA		
		Overcurrent signal debounce is 1ms		
5:0	-	Reserved	-	-

7.4.9 PMU_BAT_CTL1

PMU_BAT_CTL1 Register (RTCVDD) (default 0xE000)

Offset = 0x0B

Bit(s)	Name	Description	Access	Reset
		BAT overcurrent detection enable		
15	BAT_OC_EN	0:disable	RW	1
		1:enable		
		BAT overvoltage detection enable		
14	BAT_OV_EN	0:disable	RW	1
		1:enable		
		BAT undervoltage detection enable		
13	BAT_UV_EN	0:disable	RW	1
		1:enable		
		BAT overcurrent interrupt enable		
12	BAT_OC_INT_EN	0:disable	RW	0
		1:enable		
		BAT overvoltage interrupt enable		
11	BAT_OV_INT_EN	0:disable	RW	0
		1:enable		
10	BAT_UV_INT_EN	BAT undervoltage interrupt enable	RW	0

		0:disable		
		1:enable		
		BAT overcurrent cutoff enable		
9	BAT_OC_SHUTOFF_EN	0:disable	RW	0
		1:enable		
8:0	-	Reserved	-	-

7.4.10 PMU_VBUS_CTL0

PMU_VBUS_CTL0 Register (RTCVDD) (default 0xA680)

Offset = 0x0C

Bit(s)	Name	Description	Access	Reset
		VBUS undervoltage interrupt voltage		
		setting		
15.14	VBUS UV VOL	00:3.8V	RW	$0x^2$
13.14	VB05_0V_V0L	01:4.0V		072
		10:4.3V		
		11:4.5V		
		VBUS overvoltage interrupt voltage		
		setting		
12.12	VDUS OV VOI	00:5.3V	DW	0x2
13.12	VBUS_OV_VOL	01:5.5V	K W	
		10:5.6V		
		11:5.8V		
		VBUS overcurrent interrupt current		
		setting		0x6
		0000:200mA		
		0001:400mA		
		0010:600mA		
		0011:800mA		
11.0	VDUS OC SET	0100:1000mA	DW	
11.8	VBUS_OC_SET	0101:1200mA	ĸw	
		0110:1400mA		
		Others: reserved		
		The current under detection is the current		
		flowing from VBUS to SYSPWR		
		through the diode, the overcurrent signal		
		debounce time is 1ms		
7:6		VBUS overcurrent shutoff current		
		setting		0x6
	VBUS_OC_SHUTOFF_SET	00:500mA	RW	
		01:1000mA		
		10:1500mA		

		11:2000mA		
		The overcurrent signal debounce time is		
		1ms		
5:0	-	Reserved	-	-

7.4.11 PMU_VBUS_CTL1

PMU_VBUS_CTL1 Register (RTCVDD) (default 0xE000)

Offset = 0x0D

Bit(s)	Name	Description	Access	Reset
		VBUS overcurrent detection enable		
15	VBUS_OC_EN	0:disable	RW	1
		1:enable		
		VBUS overvoltage detection enable		
14	VBUS_OV_EN	0:disable	RW	1
		1:enable		
		VBUS undervoltage detection enable		
13	VBUS_UV_EN	0:disable	RW	1
		1:enable		
		VBUS overcurrent interrupt enable		
12	VBUS_OC_INT_EN	0:disable	RW	0
		1:enable		
		VBUS overvoltage interrupt enable		
11	VBUS_OV_INT_EN	0:disable	RW	0
		1:enable		
		VBUS undervoltage interrupt enable		
10	VBUS_UV_INT_EN	0:disable	RW	0
		1:enable		
	VIDUE OC SUUTOE	VBUS overcurrent shutoff enable		
9	VBUS_UC_SHUIUF	0:disable	RW	0
	F_EN	1:enable		
8	VDUS DETECT NT	VBUS plug interrupt enable		
	VBUS_DETECT_INT	0:disable	RW	0
	_ ^{EIN}	1:enable		
7:0	-	Reserved	-	-

7.4.12 PMU_WALL_CTL0

PMU_WALL_CTL0 Register (RTCVDD) (default 0xE680)

Offset = 0x0E

Bit(s)	Name	Description	Access	Reset
15:14	WALL_UV_VOL	WALL undervoltage interrupt voltage setting	RW	0x3

		00:3.8V		
		01:4.0V		
		10:4.3V		
		11:4.5V		
		WALL overvoltage interrupt voltage setting		
		00:5.3V		
13:12	WALL_OV_VOL	01:5.5V	RW	0x2
		10:5.6V		
		11:5.8V		
		WALL overcurrent interrupt current setting		
		0000:200mA		
		0001:300mA		
		0010:400mA		
		0011:500mA		
		0100:600mA		
		0101:700mA		
		0110:800mA		
		0111:900mA		
	WALL_OC_SET	1000:1000mA		0x6
11:8		1001:1200mA	RW	
		1010:1400mA		
		1011:1600mA		
		1100:1800mA		
		1101:2000mA		
		1110:2200mA		
		1111:2500mA		
		The current under detection is flowing from WALL		
		to SYSPWR, through the diode, the overcurrent		
		signal debounce time is 1ms		
		WALL overcurrent shutoff current setting		
		00:1000mA		
7.6	WALL_OC_SHU	01:2000mA	DW	10
/:6	TOFF_SET	10:2500mA	KW	10
	_	11:3000mA		
		Overcurrent signal debounce time is 1ms		
5:0	-	Reserved	-	-

7.4.13 PMU_WALL_CTL1

PMU_WALL_CTL1 Register (RTCVDD) (default 0xE000)

Offset = 0x0F

Bit(s)	Name	Description	Access	Reset
15	WALL_OC_EN	WALL overcurrent detection enable	RW	1

		0:disable		
		1:enable		
		WALL overvoltage detection enable		
14	WALL_OV_EN	0:disable	RW	1
		1:enable		
		WALL undervoltage detection enable		
13	WALL_UV_EN	0:disable	RW	1
		1:enable		
		WALL overcurrent interrupt enable		
12	WALL_OC_INT_EN	0:disable	RW	0
		1:enable		
		WALL overvoltage interrupt enable		
11	WALL_OV_INT_EN	0:disable	RW	0
		1:enable		
		WALL undervoltage interrupt enable		
10	WALL_UV_INT_EN	0:disable	RW	0
		1:enable		
	WALL OC SILLITOF	WALL overcurrent shutoff enable		
9	WALL_OC_SHUTOF	0:disable	RW	0
	F_EIN	1:enable		
	WALL DETECT INT	WALL plug interrupt enable		
8	WALL_DETECT_INT	0:disable	RW	0
		1:enable		
7:0	-	Reserved	-	-

7.4.14 PMU_SYS_PENDING

PMU_SYS_PENDING Register (RTCVDD) (default 0x0000)

Offset = 0x10

Bit(s)	Name	Description	Access	Reset
		BAT overvoltage state flag		
15	BAT_OV_STATUS	0:BAT is not overvoltage	R	0
		1:BAT is overvoltage		
		BAT undervoltage state flag		
14	BAT_UV_STATUS	0:BAT is not undervoltage	R	0
		1:BAT is undervoltage		
		BAT overcurrent state flag		
13	BAT_OC_STATUS	0:BAT is not overcurrent	R	0
		1:BAT is overcurrent		
		VBUS overvoltage state flag		
12	VBUS_OV_STATUS	0:BAT is not overvoltage	R	0
		1:BAT is overvoltage		
11	VBUS_UV_STATUS	VBUS undervoltage state flag	R	0

		0:BAT is not undervoltage		
		1:BAT is undervoltage		
		VBUS overcurrent state flag		
10	VBUS_OC_STATUS	0:BAT is not overcurrent	R	0
		1:BAT is overcurrent		
		WALL overvoltage state flag		
9	WALL_OV_STATUS	0:BAT is not overvoltage	R	0
		1:BAT is overvoltage		
		WALL undervoltage state flag		
8	WALL_UV_STATUS	0:BAT is not undervoltage	R	0
		1:BAT is undervoltage		
		WALL overcurrent state flag		
7	WALL_OC_STATUS	0:BAT is not overcurrent	R	0
		1:BAT is overcurrent		
		VBUS plug in pending		
6	VBUS_IN_PD	0:VBUS is not plugged in	R	0
		1: VBUS is plugged in		
		VBUS pull out pending		
5	VBUS_OUT_PD	0:VBUS is not pulled out	R	0
		1: VBUS is pulled out		
		WALL is plugged in pending		
4	WALL_IN_PD	0:WALL is not plugged in	R	0
		1: WALL is plugged in		
		WALL pull out pending		
3	WALL_OUT_PD	0:WALL is not pulled out	R	0
		1: VBUS is pulled out		
2:1	-	Reserved	-	-
		Status flag clear bit		
0	OTATUS OF AD1	Writing 1 to this bit will clear	DW	0
0	STATUS_CLEARI	PMU_SYS_PENDING[15:3], then this bit	ĸw	0
		will turn to 0 automatically		

7.4.15 PMU_APDS_CTL0

 $PMU_APDS_CTL0 \ Register \ (RTCVDD) \quad (default \ 0x15F8)$

Offset = 0x11

Bit(s)	Name	Description	Access	Reset
15		VBUS voltage and current control		
		1:Enable		
	VDUS CONTROL EN	0:Disable	DW	0
	VBUS_CONTROL_EN	When this bit is enabled, the system will	ĸw	0
		automatically adjust the current extracted		
		from VBUS, and according to the value of		

		bit 14, the system will ensure VBUS voltage		
		is higher than the threshold set by bit[11:10]		
		or the current extracted from VBUS is		
		lower than bit[13:12] setting.		
		When this bit is disabled ,the power		
		system's current is in prior. If this bit is		
		enabled, bit8 is invalid.		
		VBUS control mode selection		
14	VBUS_CONTROL_SEL	0: Voltage-limiting	RW	0
		1: Current-limiting		
		VBUS current-limiting threshold current		
		00:100mA		
13:12	VBUS CUR LIMITED	01:300mA	RW	1
		10:500mA		
		11:800mA		
		VBUS voltage-limiting threshold voltage		
		00:4.2V		
11:10	VBUS VOL LIMITED	01:4.3V	RW	1
		10:4.4V		
		11:4.5V		
		If VBUS supplies power for external		
		devices. VBUS OTG should be set to 1. to		
		avoid VBUS supplies power for SYSPWR		
		0.Do not close the diode from VBUS to		
9	VBUS_OTG	SYSPWR	RW	0
		1:Close the diode from VBUS to SYSPWR		
		the nath between VBUS and SYSPWR is		
		cutoff completely		
		When SYSPWR is lower than settings if		
		VBUS is enough high VBUS will be		
		opened rapidly		
8	VBUS FST ON	0. disable	RW	1
0	VD05_151_01	1 enable		1
		Note: this hit is strongly suggested to		
		enable.		
		When SYSPWR is higher than settings.		
		VBUS will be shut off rapidly		
		0:disable		
7	VBUS_FST_OFF	1:enable	RW	1
		Note: this bit is strongly suggested to		
		enable.		
		When SYSPWR is lower than setting, if		
6	WALL_FST_ON	WALL is high enough, WALL will be	RW	1
		opened rapidly		

		0:disable		
		1:enable		
		Note: this bit is strongly suggested to		
		enable.		
		If SYSPWR is higher than settings, WALL		
		will be shut off rapidly.		
_		0:disable		
5	WALL_FST_OFF	1:enable	RW	1
		Note: this bit is strongly suggested to		
		enable.		
		When SYSPWR is lower than settings, if		
		BAT voltage is high enough, BAT will be		
		opened rapidly		
4	BAT_FST_ON	0:disable	RW	1
		1:enable		
		Note: this bit is strongly suggested to		
		enable.		
		If SYSPWR is higher than settings, BAT		
	BAT_FST_OFF	will be off rapidly		
		0:disable	DUI	
3		1:enable	RW	1
		Note: this bit is strongly suggested to		
		enable.		
		VBUS 5KOhm pull down resistor enable		
		0:disable		
2	VBUS_PD	1:enable	RW	0
		Note: this bit is strongly suggested to		
		enable.		
		WALL 5KOhm pull down resistor enable		
		0:disable		
1	WALL_PD	1:enable	RW	0
		Note: this bit is strongly suggested to		
		enable.		
		Diode between WALL and SYSPWR enable		
0		0:Enable	DW	
0	WALL_ID_EN	1:Disable (the path between WALL and	KW	0
		SYSPWR is shut off completely)		

7.4.16 PMU_APDS_CTL1

PMU_APDS_CTL1 Register (RTCVDD) (default 0x176A)

Offset = 0x12

Bit(s)	Name	Description	Access	Reset

15	WALL_CONTROL_EN	WALL voltage and current control 1:Enable 0:Disable When this bit is enabled, the system will automatically adjust the current extracted from WALL, and according to the value of bit 14, the system will ensure WALL voltage is higher than the threshold set by bit[11:10] or the current extracted from WALL is lower than bit[13:12] setting. When this bit is disabled , the power system's current is in prior. If this bit is enabled, bit6 is invalid.	RW	0
14	WALL_CONTROL_SEL	WALL control mode selection 0:Voltage-limiting 1:Current-limiting	RW	0
13:12	WALL_CUR_LIMITED	WALL current-limiting threshold 00:500mA 01:1500mA 10:2000mA 11:3000mA	RW	1
11:10	WALL_VOL_LIMITED	WALL voltage-limiting threshold 00:4.2V 01:4.3V 10:4.4V 11:4.5V	RW	1
9	VBUS_OVP_EN	VBUS overvoltage protection, if VBUS exceeds the threshold set by bit[8:7] for more than 1µs, VBUS power path will be shutoff; When it falls below the protection value for more than 100µs, VBUS power path will be opened. 0:disable 1:enable	RW	1
8:7	VBUS_OVP_SET	VBUS overvoltage protection voltage threshold setting 00:7.0V 01:7.5V 10:8.0V 11:8.5V	RW	0x2
6	WALL_OVP_EN	WALL overvoltage protection, if WALL exceeds the threshold set by	RW	1

		bit[8:7] for more than 1µs, WALL		
		power path will be shutoff; When it		
		falls below the protection value for		
		more than 100µs, WALL power path		
		will be opened		
		0:disable		
		1:enable		
	WALL_OVP_SET	WALL overvoltage protection voltage		
		threshold setting		
5.1		00:7.0V	DUI	02
5:4		01:7.5V	K W	0X2
		10:8.0V		
		11:8.5V		
3:0	-	Reserved	-	-

7.4.17 PMU_APDS_CTL2

PMU_APDS_CTL2 Register (RTCVDD) (default 0x0055)

Offset = 0x13

Bit(s)	Name	Description	Access	Reset
		VBUS overcurrent or overvoltage state		
		indication		
15	VDUS STD INDICATE	1:VBUS power path is in overcurrent	р	X
15	VBUS_SID_INDICATE	or overvoltage state	ĸ	
		0:VBUS power path is not in		
		overcurrent or overvoltage state		
	WALL_STD_INDICATE	overcurrent or overvoltage state		
		indication	R	x
14		1:WALL power path is in overcurrent		
14		or overvoltage state		
		0:WALL power path is not in		
		overcurrent or overvoltage state		
13:0	-	Reserved	-	-

7.4.18 PMU_CHARGER_CTL

PMU_CHARGER_CTL Register (RTCVDD) (default 0x0000)

Offset = 0x14

Bit(s)	Name	Description	Access	Reset
15	-	Reserved	-	-
14:13	TEMPTH1	IC temperature threshold1 protection during charging	RW	0

		00:65°C		
		01:75°C		
		10:85°C		
		11:95°C		
		IC temperature threshold2 protection		
		during charging		
12.11	TEMPTH2	00:75°C	DW	0
12.11		01:85°C	ĸw	
		10:95°C		
		11:105°C		
		IC temperature threshold3 protection		
		during charging		
10.0		00:85°C	DW	0
10:9	TEMPTH3	01:95°C	KW	0
		10:105°C		
		11:115°C		
8:0	-	Reserved	-	-

7.4.19 PMU_SWCHG_CTL0

PMU_SWCHG_CTL0 Register (RTCVDD) (default 0x401A)

Offset = 0x16

Bit(s)	Name	Description	Access	Reset
		Enable Charge Circuit		
15	SWCHGEN	0:disable	RW	0
		1:enable		
		Enable Trickle Charge		
14	ENTKLE	0:disable	RW	1
		1:enable		
		Charger trickle charging current configuration		
13	CHGISTK	0:100mA	RW	0
		1:200mA		
	RSENSEL	Select external resistor of battery charging current		
12		sampling	DW	0
12		0:20mOhm	K VV	0
		1:10mOhm		
		Charger constant current charging current		
		configuration		
		0000:100mA		
11:8	CHGIS	0001:200mA	RW	0
		0010:400mA		
		0011:600mA		
		0100:800mA		

		0101:1000mA		
		0110:1200mA		
		0111:1400mA		
		1000:1600mA		
		1001:1800mA		
		1010:2000mA		
		1011:2200mA		
		1100:2400mA		
		1101:2600mA		
		1110:2800mA		
		1111:3000mA		
		The values above is for switch charging threshold,		
		for linear charging, values are half of the values		
		above.		
		Charger stopping timer enable bit		
7	ENCHGTIME	0:disable	RW	0
		1:enable		
		Trickle Timer		
		00:30min		
6:5	TKLT	01:40min	RW	0
		10:50min		
		11:60min		
		CC/CV Charger Timer		
		00:4hour		
4:3	CHGT	01:6hour	RW	0x3
		10:8hour		
		11:12hour		
		When bit1 and this bit are enabled at the same time,		
		the battery voltage will be detected every bit0		
	ENGLICEGOEE	period, if its value exceeds 4.24V, the charging	DIII	
2	ENCHGFCOFF	process will be terminated.	RW	0
		0:disable		
		1:enable		
		Auto detection charging termination		
1	ENCHGATDT	0:disable	RW	1
		1:enable		
		Detecting charging termination Time cycle config		
0	DTSEL	1:every 20s	RW	0
		0:every 3min		

7.4.20 PMU_SWCHG_CTL1

PMU_SWCHG_CTL1 Register (RTCVDD) (default 0x202A) Offset = 0x17

Bit(s)	Name	Descript	tion	Access	Reset		
		Battery of	letection				
15	ENBATDT	0:disable	5	RW	0		
		1:enable	1				
		When C	HGPWR	OK=0, charg	er auto cutoff enable		
14	ENATDIS	0:disable	5			RW	0
		1:enable					
	ENCUDDIS	Charging current auto increase or decrease enable					
13	ENCORRIS	0:disable	•	RW	1		
	E	1:enable					
		Time ste					
		Current	charging	, ,			
12.11	CUPPISET	00:0.5s				PW/	0
12.11	CORRISET	01:1s				IX VV	0
		10:2s					
		11:4s					
		Constant	t Voltage	charging, vo	ltage setting (set by this bit		
		together	with bits				
		Bit8	Bit10	CV_SET	Note		
	CV_SET_L	0	0	4.20V	-		
					In linear/switch		
		0	1 4.25V charging, the volta	charging, the voltage			
					set is 4.30V/4.25V		
10		1	0	4.35V	-	RW	0
		1	1	4.40V	-		
		If the co	onstant v				
		voltage i	is near 4				
		charging	, time wi				
		In order	r to dec	crease the cl	harging time, the battery		
		constant	voltage				
		charging time					
		Charging	g termina	ate voltage set	tting		
		Bit8		Bit9	STOP Voltage		
		0		0	4.16V		
		0		1	4.18V		
		1		0	4.31V		
9	STOPV	1		1	4.33V	RW	0
		In charg	ging, if	the battery v	oltage is higher than the	1 >	
		STOPV value, then the charging process will be					
		hardware stopped every 3min and delay 1s to detect the					
		battery voltage, if the voltage is higher than or equals					
		STOPV, then CHGEND will be set to 1					
0		Constant	t chargir	ng voltage se	etting (set by this bit and	DW	0
8	CV_SET_H	bit10)					0

 $\operatorname{Copyright}^{\scriptscriptstyle (\! 0\!)}$ 2015 Actions (Zhuhai) Technology Co., Ltd. All rights reserved.

		Bit8	Bit10	STOP Voltage	Note		
		0	0	4.20V			
		0	1	4.25V	In liner/switch charging, the voltage set is 4.30V/4.25V		
		1	0	4.35V			
		1	1	4.40V			
7:6	CHGPWRS ET	The v actual c 00:0.06 01:0.16 10:0.26 11:0.37	voltage d differenc 50V 50V 54V 73V	lifference la e is less than	arger SYSPWR than BAT, if n that, begin to stop charging.	RW	0
5	ENSAMP	If SYS current phase. 0:disab 1:enab	PWR is will be	RW	1		
4	ENCHGTE MP	Automa with th 0:Disal 1:Enab	atically a e variation ble ble	RW	0		
3:2	SYSSTEAD YSET	Set SY 11: hig 10: hig 01: low 00: lov	SPWR s her h v ver	RW	0x2		
1	ENSYN	Enable 0: disal 1: enat	SYN reg ble ble	RW	1		
0	-	Reserv	ed	-	-		

7.4.21 PMU_SWCHG_CTL2

PMU_SWCHG_CTL2 Register (RTCVDD) (default 0x0005)	
Offset = 0x18	

Bit(s)	Name	Description	Access	Reset
15:13		OSC frequency setting (kHz)		
	FSL[2:0]	000:547		
		001:600	RW	0
		010:670		
		011:724		

		100:980		
		101:1200		
		110:1340		
		111:1450		
12		Input offset of OP2 in Constant Current loop adjust		
	TMEN2	enable	RW	0
		0:Disable		0
		1:Enable		
		Adjusting mode of input offset OP2 in Constant		
11	OCDW2	Current loop	RW	0
11	USRW2	0: automatically		0
		1: manually		
		Input offset of OP in Constant Current loop adjust		
10	TMEN	enable	RW	0
10	TMEN	0:Disable		0
		1:Enable		
9	-	Reserved	-	-
	OSRW	Adjusting mode of input offset OP in Constant Current		
0		loop	DW	0
0		0: automatically	ĸw	0
		1: manually		
	OSTIME	Setting the adjusting time of OP input offset in		
7		Constant Current loop	RW	0
		0: trim once at power on only		0
		1:trim once every 10min		
6:5	-	Reserved	-	-
	EN_OCP	Charging overcurrent protection enable		
4		0:Disable	RW	0
		1:Enable		
3	ILIMIT	Setting the current limit		
		0:2.5A	RW	0
		1:3.47A		
2:0	-	Reserved	-	-

7.4.22 PMU_SWCHG_CTL3

PMU_SWCHG_CTL3 Register (RTCVDD) (default 0x4AAA)

Offset = 0x19

Bit(s)	Name	Description	Access	Reset
		Setting DC-DC charger working modes		
15	MODSEL	0:linear charging mode	RW	0
		1:switch charging mode		
14	-	Reserved	-	-

13:7	TRIMSET2	OP2 trim code manually set 0000000: more positive 1111111: more negative	RW	0x55
6:0	TRIMSET	OP trim code manually set 0000000: more positive 1111111: more negative	RW	0x2A

7.4.23 PMU_SWCHG_CTL4

PMU_SWCHG_CTL4 Register (2)	RTCVDD) (default 0x0000)
-----------------------------	--------------------------

Offset = 0x1A

Bit(s)	Name	Description	Access	Reset
15	-	Reserved	-	-
		Flag bit of power voltage relative to BAT		
14	CHGPWR_RTC	0:SYSPWR <bat+δv< td=""><td>R</td><td>х</td></bat+δv<>	R	х
		1:SYSPWR>BAT+ΔV		
		Flag bit of Ichg (charging current)		
13	CHGOV001_RTCD	0: Ichg<1%Ichg_reg	R	х
		1: Ichg>1%Ichg_reg		
		Charging state flag		
		00: reserved		
12:11	CHGPHASE<1 :0>	01: trickle charging phase	R	х
		10: CC charging phase		
		11: CV charging phase		
		Charging finished flag		
10	CHGEND	0:on charging	R	Х
		1:charging finished		
		Charging time finished flag		
9	CHGTIMEEND	0:CC/CV Timer/Trickle timer doesn't count up	R	Х
		1:CC/CV Timer/Trickle timer counts up		
		BAT existance flag		
8	BATEXT	0:no BAT	R	Х
		1:BAT		
		Battery detection finished flag		
7	DTOVER	0:under detection	R	Х
		1:detection finished		
6:0	OSTRIMOUT	Revised result of OP in CC loop	R	X

7.4.24 **PMU_DC_OSC**

PMU_DC_OSC Register (RTCVDD) (default 0xAA0C)

Offset = 0x1b

Bit(s)	Name	Description	Access	Reset
15:9	-	Reserved	-	-
8	EN_DC4L	DC4 Enable (bit0 will be cleared to 0 when entering S3A/S3/S4) 1:enable 0:disable	RW	0
7	EN_DC3L	DC3 Enable (bit0 will be cleared to 0 when entering S3A/S3/S4) 1:enable 0:disable	RW	0
6	EN_DC2L	DC2 Enable (bit0 will be cleared to 0 when entering S3A/S3/S4) 1:enable 0:disable	RW	0
5	EN_DC1L	DC1 Enable (bit0 will be cleared to 0 when entering S3A/S3/S4) 1:enable 0:disable	RW	0
4	EN_DC0L	DC0 Enable (bit0 will be cleared to 0 when entering S3A/S3/S4) 1:enable 0:disable	RW	0
3	RG_OSC_DEL	OSC delay selection 1: DC-DC PMOS turn on time interval 150ns 0: DC-DC PMOS turn on time interval 5ns	RW	1
2:0	FSL	OSC frequency adjust 000~010: smaller 011:2.0MHz 100~111:bigger	RW	0x4

7.4.25 **PMU_DC0_CTL0**

PMU_DC0	_CTL0 Register	(RTCVDD)	(default 0x4000)
---------	----------------	----------	------------------

Offset = 0x1C

Bit(s)	Name	Description			Access	Reset
15:8	DC_VO L	DC0 Voltage setting (TRES)				
		Code	Voltage(V)	Step(mV)	RW	0x40
		0000,000~1111,111	0.6~2.19375	6.25		

		Four important voltage settings: 1100,0000:1.8V 1001,0000:1.5V 0110,0000:1.2V		
		0100,0000:1.0V		
7:0	-	Reserved	-	-

7.4.26 **PMU_DC1_CTL0**

PMU_DC1_CTL0 Register (RTCVDD) (default 0x4000)

Offset = 0x23

Bit(s)	Name	Description		Access	Reset	
		DC1 Voltage setting (T	RES)			
		Code	Voltage	Step		
	0000'0000~	6.25mV				
		1111'1111 0.0~2.19373 0.23mV				
15:8	DC_VOL	Four important voltage settings:				0x40
		1.8V:1100,0000				
		1.5V:1001,0000				
		1.2V: 0110,0000				
		1.0V: 0100,0000				
7:0	-	Reserved			-	-

7.4.27 **PMU_DC2_CTL0**

PMU	DC2	CTL0 Register	(RTCVDD)	(default 0x4000)
	-			(

Offset = 0x2A

Bit(s)	Name	Description			Access	Reset
		DC2 Voltage setting (TF	RES)	_		
		Code	Voltage	Step		
		0000'0000~	0 6 2 10275	5 6.25mV		
		1111'1111	0.6~2.19375			
15:8	DC_VOL	Four important voltage settings:				0x40
		1100,0000:1.8V				
		1001,0000:1.5V				
		0110,0000:1.2V				
		0100,0000:1.0V				
7:0	-	Reserved			-	-

7.4.28 **PMU_DC3_CTL0**

PMU_DC3_CTL0 Register (RTCVDD) (default 0x4000) Offset = 0x31

Bit(s)	Name	Description			Access	Reset
		DC3 Voltage setting (TI	RES)			
		Code	Voltage	Step		
		0000'0000~0111'11	0.6~1.39375	6.25mV		
						0x40
		1000,0000~1110,10	1.4~4.0	~4.0 25mV		
15:8	DC_VOL	Four important voltage s 3.1V:1100,0100 1.8V:1001,0000 1.5V:1000,0100 1.2V: 0110,0000 1.0V: 0100,0000	settings:		RW	
7:0	-	Reserved			-	-

7.4.29 **PMU_DC4_CTL0**

PMU_DC4_CTL0 Register (RTCVDD) (default 0x4000)

Offset = 0x79

Bit(s)	Name	Description	Description		Access	Reset
		DC4 Voltage setting (T	RES)	_	RW	0x40
		Code	Voltage	Step		
15.0	DC VOI	0000'0000~ 1111'1111	0.6~2.19375	6.25mV		
15:8	DC_VOL	1100,0000:1.8V 1001,0000:1.5V 0110,0000:1.2V 0100,0000:1.0V				
7:0	-	Reserved			-	-

7.4.30 **PMU_DC_ZR**

PMU_DC_ZR Register (RTCVDD) (default 0x0000)

Offset = 0x38

Bit(s)	Name	Description	Access	Reset
15:12	ZR3	Auto zero-crossing calibration state	R	0
11:8	ZR2	Auto zero-crossing calibration state	R	0

7:4	ZR1	Auto zero-crossing calibration state	R	0
3:0	ZR0	Auto zero-crossing calibration state	R	0

7.4.31 **PMU_LDO0_CTL0**

PMU_LDO0_CTL0 Register (RTCVDD) (default 0x00A0)

Offset = 0x39

Bit(s)	Name	Description	Access	Reset
15:6	-	Reserved	-	-
		Others: 3.4V		
		1011: 3.4V		
		1010: 3.3V		
		1001: 3.2V		
		1000: 3.1V		
		0111: 3.0V		
5:2	LDO0_VOL	0110: 2.9V	RW	0x8
		0101: 2.8V		
		0100: 2.7V		
		0011: 2.6V		
		0010: 2.5V		
		0001: 2.4V		
		0000: 2.3V		
		LDO0 switch function Enable		
		(FSM will clear bit[0] to 0 when entering		
		S3A/S3/S4)		
		0:disable		
		1:enable		
1	LDO0_SW_EN	Note: in order to realize the switch function, the	RW	0
		LDO0 enable bit must be disabled.		
		When the system enters Standby mode, the		
		power needed to be shut down, at the time LDO		
		function is disabled, the switch function should		
		be disabled, too		
		LDO0 enable control		
		(FSM will clear bit[0] to 0 when entering		
0	LDO0_EN	S3A/S3/S4)	RW	0
		0:disable		
		1:enable		

7.4.32 PMU_LDO1_CTL0

PMU_LDO1_CTL0 Register (RTCVDD) (default 0x00A0)

Bit(s)	Name	Description		Reset
15:6	-	Reserved	-	-
		Other: 3.4V		
		1011: 3.4V		
		1010: 3.3V		
		1001: 3.2V		
		1000: 3.1V		
		0111: 3.0V		
5:2	LDO1_VOL	0110: 2.9V	RW	0x8
		0101: 2.8V		
		0100: 2.7V		
		0011: 2.6V		
		0010: 2.5V		
		0001: 2.4V		
		0000: 2.3V		
		LDO1 switch function enable:		
		(FSM will clear bit[0] to 0 when entering		
		S3A/S3/S4)		
		0:disable		
1	IDO1 SW EN	1:enable	DW	0
1	LDOI_SW_EN	Note: in order to realize the switch function, the	κw	0
		LDO1 enable bit must be disabled.		
		When the system enters Standby mode, the power		
		needed to be shut down, at the time LDO function is		
		disabled, the switch function should be disabled, too		
		LDO1 enable control		
		(FSM will clear bit[0] to 0 when entering		
0	LDO1_EN	S3A/S3/S4)	RW	0
		0:disable		
		1:enable		

7.4.33 PMU_LDO2_CTL0

PMU LDO2	CTL Register	(RTCVDD)	(default 0x00A0)
		()	(

Offset = 0x3D

Bit(s)	Name	Description	Access	Reset
15:6	-	Reserved	-	-
	LDO2_VOL	Others: 3.4V	RW	0x8
5.2		1011: 3.4V		
5:2		1010: 3.3V		
		1001: 3.2V		

		1000: 3.1V		
		0111: 3.0V		
		0110: 2.9V		
		0101: 2.8V		
		0100: 2.7V		
		0011: 2.6V		
		0010: 2.5V		
		0001: 2.4V		
		0000: 2.3V		
		LDO2 switch function Enable		
		(FSM will clear bit[0] to 0 when entering		
		S3A/S3/S4)		
		0:disable		
		1:enable		
1		Note: in order to realize the switch	DIV	0
1	LDO2_SW_EN	function, the LDO2 enable bit must be	KW	0
		disabled.		
		When the system enters Standby mode,		
		the power needed to be shut down, at the		
		time LDO function is disabled, the switch		
		function should be disabled, too		
		LDO2 Enable control		
		(FSM will clear bit[0] to 0 when entering		
0	LDO2_EN	S3A/S3/S4)	RW	0
		0:disable		
		1:enable		

7.4.34 **PMU_LDO3_CTL0**

PMU_LDO3_	_CTL0 Register	(RTCVDD)	(default 0x0)096)

Offset = 0x3F

Bit(s)	Name	Description	Access	Reset		
15:6	-	Reserved				-
		Choosing LDO	output voltage	range		
		1:2.1V~3.3V				
5	IDO2 VOL SEL	0:0.7V~2.2V			DW	0
	LDO3_VOL_SEL	When switching this bit, LDO voltage will fall down			KW	0
		for a while, the LDO should not be switched in				
		normal working	g mode.			
		LDO3_VOL	bit[5]=0	bit[5]=1		
4 1		1111	2.2V	3.3V	DW	0.0
4:1	LDO3_VOL	1110	2.1V	3.3V	KW	0XB
		1101	2.0V	3.3V		

		1100	1.9V	3.3V		
		1011	1.8V	3.2V		
		1010	1.7V	3.1V		
		1001	1.6V	3.0V		
		1000	1.5V	2.9V		
		0111	1.4V	2.8V		
		0110	1.3V	2.7V		
		0101	1.2V	2.6V		
		0100	1.1V	2.5V		
		0011	1.0V	2.4V		
		0010	0.9V	2.3V		
		0001	0.8V	2.2V		
		0000	0.7V	2.1V		
		LDO3 Enable c	ontrol			
		(FSM will c	lear bit[0] to () when entering		
0	LDO3_EN	S3A/S3/S4)			RW	0
		0:disable				
		1:enable				

7.4.35 **PMU_LDO4_CTL0**

PMU_LDO4_CTL0 Register (RTCVDD) (default 0x0096)

Offset = 0x41

Bit(s)	Name	Description			Access	Reset
15:6	-	Reserved			-	-
		LDO output voltag	ge range selectio	n		
		1:2.1V~3.3V				
		0: 0.7V~2.2V				
5	LDO4_VOL_SEL	When the range	is switched, Ll	DO voltage will fall	RW	0
		down for a short	while. When L	DO is turned on, the		
		voltage range should not be switched in normal working				
		mode.				
		LDO4_VOL	bit[5]=0	bit[5]=1		
		1111	2.2V	3.3V		
		1110	2.1V	3.3V		
		1101	2.0V	3.3V		
4:1	LDO4_VOL	1100	1.9V	3.3V	RW	0xB
		1011	1.8V	3.2V		
		1010	1.7V	3.1V		
		1001	1.6V	3.0V		
		1000	1.5V	2.9V		

	0110	1.3V	2.7V		
	0101				
	0101	1.2V	2.6V		
	0100	1.1V	2.5V		
	0011	1.0V	2.4V		
	0010	0.9V	2.3V		
	0001	0.8V	2.2V		
	0000	0.7V	2.1V		
0 LDO4_	EN LDO4 en (FSM will 0:disable	LDO4 enable control (FSM will clear bit[0] to 0 when entering S3A/S3/S4) 0:disable			

7.4.36 PMU_LDO6_CTL0

PMU_LDO6_CTL0 Register (RTCVDD) (default 0x0086)

Offset = 0x45

Bit(s)	Name	Description			Access	Reset
15:6	-	Reserved			-	-
5	LDO6_VOL_SEL	LDO output volta 1 : 2.1V~3.3V 0 : 0.85V~2.2V Switching this bi short time, when in normal mode switched.	RW	0		
		LDO6 VOL	bit[5]=0	bit[5]=1		
		1111	2.20V	3.2V		
		1110	1.25V	3.2V		0x3
		1101	1.20V	3.2V		
		1100	1.15V	3.2V		
		1011	1.10V	3.2V		
		1010	1.05V	3.1V		
4:1	LDO6_VOL	1001	1.05V	3.0V	RW	
		1000	1.05V	2.9V		
		0111	1.05V	2.8V		
		0110	1.05V	2.7V		
		0101	1.05V	2.6V		
		0100	1.05V	2.5V		
		0011	1.00V	2.4V		
		0010	0.95V	2.3V		

		0001	0.90V	2.2V		
		0000	0.85V	2.1V		
0 LDO6_EN	LDO6_EN	LDO6 enable control: (FSM will clear bit[0] to 0 when entering S3A/S3/S4) 0:disable			RW	0

7.4.37 **PMU_LDO7_CTL0**

			(1 0 1 0 000 0	
PMU LDO7	CTTL() Register	(RTCVDD)	(default 0x0096)	ì.
	CILO REGISTO	$(I(I \cup D D))$	(ucluun onoo)o)	1

Offset = 0x47

Bit(s)	Name	Description			Access	Reset
15:6	-	Reserved			-	-
5	LDO7_VOL_SEL	LDO output voltage range selection 1 : 2.1V~3.3V 0 : 0.7V~2.2V LDO output voltage will fall down for a short while when switching the range, after LDO is turned on and working in normal mode, the voltage range should not be switched.			RW	0
		LDO7 VOL	bit[5]=0	bit[5]=1		
		 1111:	2.2V	3.3V		0xB
		1110:	2.1V	3.3V		
		1101:	2.0V	3.3V		
		1100:	1.9V	3.3V		
		1011:	1.8V	3.2V		
		1010:	1.7V	3.1V		
		1001:	1.6V	3.0V		
4:1	LDO7_VOL	1000:	1.5V	2.9V	RW	
		0111:	1.4V	2.8V		
		0110:	1.3V	2.7V		
		0101:	1.2V	2.6V		
		0100:	1.1V	2.5V		
		0011:	1.0V	2.4V		
		0010:	0.9V	2.3V		
		0001:	0.8V	2.2V		
		0000:	0.7V	2.1V		
0	LDO7_EN	LDO7 Enable con (FSM will clear bi 0:disable 1:enable	trol t[0] to 0 when en	tering S3A/S3/S4)	RW	0

7.4.38 PMU_LDO8_CTL0

PMU_LDO8_CTL0 Register (RTCVDD) (default 0x0096)

Offset = 0x49

Bit(s)	Name	Description			Access	Reset
15:6	-	Reserved			-	-
5	LDO8_VOL_SEL	LDO output voltage range selection 1 : 2.1V~3.3V 0 : 0.7V~2.2V LDO output voltage will fall down for a short while when switching the range, after LDO is turned on and working in normal mode, the voltage range should not be switched.			RW	0
		LDO8_VOL	bit[5]=0	bit[5]=1		
		1111	2.2V	3.3V		
		1110	2.1V	3.3V		
		1101	2.0V	3.3V	RW	0xB
	LDO8_VOL	1100	1.9V	3.3V		
		1011	1.8V	3.2V		
		1010	1.7V	3.1V		
		1001	1.6V	3.0V		
4:1		1000	1.5V	2.9V		
		0111	1.4V	2.8V		
		0110	1.3V	2.7V		
		0101	1.2V	2.6V		
		0100	1.1V	2.5V		
		0011	1.0V	2.4V		
		0010	0.9V	2.3V		
		0001	0.8V	2.2V		
		0000	0.7V	2.1V		
0	LDO8_EN	LDO8 enable cont (FSM will clear bi 0:disable 1:enable	rol t[0] to 0 when e	ntering S3A/S3/S4)	RW	0

7.4.39 **PMU_LDO9_CTL**

PMU_LDO9_CTL Register (RTCVDD) (default 0xB000)

Offset = 0x4B

Bit(s)	Name	Description	Access	Reset
15:13	LDO9_VOL	LDO9(SVCC) Voltage setting	RW	0x5

		000:2.6V		
		001:2.7V		
		010:2.8V		
		011:2.9V		
		100:3.0V		
		101:3.1V		
		110:3.2V		
		111:3.3V		
		SVCC low voltage protection enable		
12	SVCC_LOW_EN	0:Disable	RW	1
		1:Enable		
11:7	-	Reserved	-	-
6:0		Constant current loop OP2 calibration	D	V
0.0		result	К	А

7.4.40 PMU_OV_STATUS

PMU	OV	STATUS	Register	(RTCVDD)	(default	0x0000)
	· · · _			()	(

Offset = 0x4D

Bit(s)	Name	Description	Access	Reset
		DC-DC0 output overvoltage state flag		
15	DC-DC0_OV_STATUS	0:DC-DC0 output not overvoltage	R	0
		1:DC-DC0 output overvoltage		
		DC-DC1 output overvoltage state flag		
14	DC-DC1_OV_STATUS	0:DC-DC1 output not overvoltage	R	0
		1:DC-DC1 output overvoltage		
		DC-DC2 output overvoltage state flag		
13	DC-DC2_OV_STATUS	0:DC-DC2 output not overvoltage	R	0
		1:DC-DC2 output overvoltage		
		DC-DC3 output overvoltage state flag		
12	DC-DC3_OV_STATUS	0:DC-DC3 output not overvoltage	R	0
		1:DC-DC3 output overvoltage		
		LDO0 output overvoltage state flag		
11	LDO0_OV_STATUS	0:LDO0 output not overvoltage	R	0
		1:LDO0 output overvoltage		
		LDO1 output overvoltage state flag		
10	LDO1_OV_STATUS	0:LDO1 output not overvoltage	R	0
		1:LDO1 output overvoltage		
		LDO2 output overvoltage state flag		
9	LDO2_OV_STATUS	0:LDO2 output not overvoltage	R	0
		1:LDO2 output overvoltage		
0	IDO2 OV STATUS	LDO3 output overvoltage state flag	D	0
0	LDO3_OV_STATUS	0:LDO3 output not overvoltage	К	0

		1:LDO3 output overvoltage		
		LDO4 output overvoltage state flag		
7	LDO4_OV_STATUS	0:LDO4 output not overvoltage	R	0
		1:LDO4 output overvoltage		
6	-	Reserved	-	-
		LDO6 output overvoltage state flag		
5	LDO6_OV_STATUS	0:LDO6 output not overvoltage	R	0
		1:LDO6 output overvoltage		
		LDO7 output overvoltage state flag		
4	LDO7_OV_STATUS	0:LDO7 output not overvoltage	R	0
		1:LDO7 output overvoltage		
		LDO8 output overvoltage state flag		
3	LDO8_OV_STATUS	0:LDO8 output not overvoltage	R	0
		1:LDO8 output overvoltage		
		DC-DC4 output overvoltage state flag		
2	DC-DC4_OV_STATUS	0:DC-DC4 output not overvoltage	R	0
		1:DC-DC4 output overvoltage		
1	-	Reserved	-	-
		Status indication clear bit		
0		When writing 1 to this bit, the bit[15:2]	DUI	0
0	STATUS_CLEAR2	will be cleared, and this bit will turn to	KW	0
		0 automatically		

7.4.41 PMU_UV_INT_EN

PMU_UV_INT_EN Register (RTCVDD) (default 0xFFFC)

Offset = 0x4E

Bit(s)	Name	Description	Access	Reset
		DC-DC0 output undervoltage interrupt		
15	DC DC0 UV EN	enable	DW	1
15		0:Disable	КW	1
		1:Enable		
		DC-DC1 output undervoltage interrupt		
14	DC-DC1_UV_EN	enable	DW	1
		0:Disable	КW	
		1:Enable		
	DC DC2 UV EN	DC-DC2 output undervoltage interrupt		
12		enable	DW	1
15	DC-DC2_UV_EN	0:Disable	КW	1
		1:Enable		
		DC-DC3 output undervoltage interrupt		
12	DC-DC3_UV_EN	enable	RW	1
		0:Disable		

		1:Enable		
11	LDO0_UV_EN	LDO0 output undervoltage interrupt enable 0:Disable 1:Enable	RW	1
10	LDO1_UV_EN	LDO1 output undervoltage interrupt enable 0:Disable 1:Enable	RW	1
9	LDO2_UV_EN	LDO2 output undervoltage interrupt enable 0:Disable 1:Enable	RW	1
8	LDO3_UV_EN	LDO3 output undervoltage interrupt enable 0:Disable 1:Enable	RW	1
7	LDO4_UV_EN	LDO4 output undervoltage interrupt enable 0:Disable 1:Enable	RW	1
6	-	Reserved	-	-
5	LDO6_UV_EN	LDO6 output undervoltage interrupt enable 0:Disable 1:Enable	RW	1
4	LDO7_UV_EN	LDO7 output undervoltage interrupt enable 0:Disable 1:Enable	RW	1
3	LDO8_UV_EN	LDO8 output undervoltage interrupt enable 0:Disable 1:Enable	RW	1
2	DC-DC4_UV_INT_EN	DC-DC4 output undervoltage interrupt enable 0:Disable 1:Enable	RW	1
1-0	-	Reserved	-	-

7.4.42 PMU_UV_STATUS

PMU_UV_STATUS Register (RTCVDD) (default 0x0000)

Offset = 0x4F

Bit(s)	Name	Description	Access	Reset
		DC-DC0 output undervoltage state flag		
15	DC-DC0_UV_STATUS	0:DC-DC0 output is not undervoltage	R	0
		1:DC-DC0 output is undervoltage		
		DC-DC1 output undervoltage state flag	1	
14	DC-DC1_UV_STATUS	0:DC-DC1 output is not undervoltage	R	0
		1:DC-DC1 output is undervoltage		
		DC-DC2 output undervoltage state flag		
13	DC-DC2_UV_STATUS	0:DC-DC2 output is not undervoltage	R	0
		1:DC-DC2 output is undervoltage		
		DC-DC3 output undervoltage state flag		
12	DC-DC3_UV_STATUS	0:DC-DC3 output is not undervoltage	R	0
		1:DC-DC3 output is undervoltage		
		LDO0 output undervoltage state flag		
11	LDO0 UV_STATUS	0:LDO0 output is not undervoltage	R	0
		1:LDO0 output is undervoltage		
		LDO1 output undervoltage state flag		
10	LDO1 UV STATUS	0:LDO1 output is not undervoltage	R	0
		1:LDO1 output is undervoltage		
		LDO2 output undervoltage state flag	+	+
9	LDO2 UV STATUS	0:LDO2 output is not undervoltage	R	0
		1:LDO2 output is undervoltage		
	++	LDO3 output undervoltage state flag	+	+
8	LDO3 UV STATUS	0:LDO3 output is not undervoltage	R	0
		1:LDO3 output is undervoltage		
		LDO4 output undervoltage state flag	+	+
7	LDO4 UV STATUS	0:LDO4 output is not undervoltage	R	0
		1:LDO4 output is undervoltage		
6	-	Reserved	-	-
-		LDO6 output undervoltage state flag		
5	LDO6 UV STATUS	0:LDO6 output is not undervoltage	R	0
~		1:LDO6 output is undervoltage		
		LDO7 output undervoltage state flag		1
4	LDO7 UV STATUS	0·LDO7 output is not undervoltage	R	0
·		1. LDO7 output is undervoltage		
		LDO8 output undervoltage state flag		
3	LDO8 UV STATUS	0.1 DO8 output is not undervoltage	R	0
5		1. LDO8 output is undervoltage		Š
		DC-DC4output undervoltage state flag		
2	DC-DC4 UV STATUS	0.DC-DC4 output is not undervoltage	R	0
-		1.DC-DC4 output is undervoltage		v
1	'	Reserved		
0	STATUS CIFAR4	Status flag clear hit	RW	0
8 7 6 5 4 3 2 1 0	LDO3_UV_STATUS LDO4_UV_STATUS - LDO6_UV_STATUS LDO7_UV_STATUS LDO8_UV_STATUS DC-DC4_UV_STATUS - STATUS_CLEAR4	1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.	R R - R R R R R R R	0 0 - 0 0 0 0 0 - 0 0 - 0

	When writing 1 to this bit, the bit[15:2]	
	will be cleared, and this bit will turn to 0	
	automatically	

7.4.43 PMU_OC_INT_EN

PMU_OC_INT_EN Register (RTCVDD) (default 0x0FF8)

Offset = 0x50

Bit(s)	Name	Description	Access	Reset
15:12	-	Reserved	-	-
		LDO0 output overcurrent interrupt		
11	LDOO OC INT EN	enable	DW	1
11		0:Disable	КW	1
		1:Enable		
		LDO1 output overcurrent interrupt		
10	LDO1 OC INT FN	enable	RW	1
10		0:Disable	IX W	1
		1:Enable		
		LDO2 output overcurrent interrupt		
9	LDO2 OC INT EN	enable	RW	1
-		0:Disable	100	1
		1:Enable		
		LDO3 output overcurrent interrupt		
8	LDO3 OC INT EN	enable	RW	1
Ũ		0:Disable		
		1:Enable		
		LDO4 output overcurrent interrupt	RW	
7	LDO4 OC INT EN	enable		1
		0:Disable		
		1:Enable		
6	-	Reserved	-	-
		LDO6 output overcurrent interrupt		
5	LDO6 OC INT EN	enable	RW	1
		0:Disable		
		LDO7 output overcurrent interrupt		
4	LDO7 OC INT EN	enable	RW	1
		0:Disable		
		LDO8 output overcurrent interrupt		
3	LDO8_OC_INT_EN	enable	RW	1
		0:Disable		
		1:Enable		

-

Reserved

-

PMU_OC_STATUS 7.4.44

PMU_OC_STATUS Register (RTCVDD) (default 0x0000)

Offset = 0x51

Bit(s)	Name	Description	Access	Reset
15:12	-	Reserved	-	-
		LDO0 output overcurrent state flag		
		0:LDO0 output is not overcurrent		
11	LDOO OG GTATUG	1:LDO0 output is overcurrent	р	0
11	LDOU_OC_STATUS	When LDO is overcurrent, this LDO	K	0
		will be HW shutdown, and this bit will		
		turn to 1.		
		LDO1 output overcurrent state flag		
		0:LDO1 output is not overcurrent		
10		1:LDO1 output is overcurrent	D	0
10	LDOI_OC_STATUS	When LDO is overcurrent, this LDO	K	0
		will be HW shutdown, and this bit will		
		turn to 1.		
		LDO2 output overcurrent state flag		0
	LDO2_OC_STATUS	0:LDO2 output is not overcurrent		
0		1:LDO2 output is overcurrent	р	
9		When LDO is overcurrent, this LDO	K	
		will be HW shutdown, and this bit will		
		turn to 1.		
		LDO3 output overcurrent state flag		0
		0:LDO3 output is not overcurrent		
0		1:LDO3 output is overcurrent	р	
0	LD05_0C_STATUS	When LDO is overcurrent, this LDO	ĸ	
		will be HW shutdown, and this bit will		
		turn to 1.		
		LDO4 output overcurrent state flag		
		0:LDO4 output is not overcurrent		
7	IDO4 OC STATUS	1:LDO4 output is overcurrent	D	0
/	LD04_0C_STATUS	When LDO is overcurrent, this LDO	К	0
		will be HW shutdown, and this bit will		
		turn to 1.		
6	-	Reserved	-	-
		LDO6 output overcurrent state flag		
5	IDOG OC STATUS	0:LDO6 output is not overcurrent	D	0
5	LDO6_OC_STATUS	1:LDO6 output is overcurrent	К	
		When LDO is overcurrent, this LDO		

		will be HW shutdown, and this bit will		
		turn to 1.		
		LDO7 output overcurrent state flag		
		0:LDO7 output is not overcurrent		
4	LDO7 OC STATUS	1:LDO7 output is overcurrent	р	0
4	LD0/_0C_STATUS	When LDO is overcurrent, this LDO	ĸ	0
		will be HW shutdown, and this bit will		
		turn to 1.		
	LDO8_OC_STATUS	LDO8 output overcurrent state flag	R	
		0:LDO8 output is not overcurrent		0
2		1:LDO8 output is overcurrent		
3		When LDO is overcurrent, this LDO		
		will be HW shutdown, and this bit will		
		turn to 1.		
2:1	-	Reserved	-	-
0		Status flag clear bit	RW	
	STATUS_CLEAR3	When writing 1 to this bit, the bit[15:2]		0
		will be cleared, and this bit will turn to		
		0 automatically		

7.4.45 **PMU_OT_CTL**

PMU_OT_CTL Register (RTCVDD) (default 0x3300)

Offset = 0x52

Bit(s)	Name	Description	Access	Reset
		IC overtemperature status flag		
15	OT STATUS	0:not overtemperature	DW	0
15	UI_STATUS	1: overtemperature	КW	0
		Write 1 clear to 0		
		IC overtemperature temperature interrupt		
		setting		
14.12	OT_SET	00:60°C	DW	1
14:13		01:70°C	ĸw	1
		10:80°C		
		11:90°C		
	OT_INT_EN	IC overtemperature interrupt enable		
12		0:disable	RW	1
		1:enable		
		IC overtemperature shut off enable		
11	OT_SHUTOFF_EN	0:disable	RW	0
		1:enable		
10.0	OT SHUTOEE SET	IC overtemperature shut off temperature	DW	1
10.9	OI_SHUIOFF_SET	setting	кw	1

		00:90°C		
		01:100°C		
		10:110°C		
		11:120°C		
		IC overtemperature detection enable		
8	OT_EN	0:disable	RW	1
		1:enable		
7-0	-	Reserved	-	-

7.4.46 **PMU_CM_CTL0**

PMU_CM_CTL0 Register (RTCVDD) (default 0xF000)

Offset = 0x53

Bit(s)	Name	Description	Access	Reset
		Enable coulomb meter's pre-amplifier		
15	ENCM	1:enable	RW	1
		0:disable		
		Enable pre-amplifier's primary offset		
14	ENCHOP	reduction function	RW	1
14		1:enable		
		0:disable		
	AUTOGACTL_EN	Enable automatic gain control of the		
		pre-amplifier.		
13			RW	1
		1: gain = automatically selected		
		0: gain = fixed set		
12:0	-	Reserved	-	-

7.4.47 PMU_PWR_STATUS

PMU_PWR_STATUS Register (RTCVDD) (default 0x0000)

Bit(s)	Name	Description	Access	Reset
15	DC-DC0_PWR_OK	DC-DC0 power output status indication 0:no output or voltage is lower than normal value at present	R	x
14	DC-DC1_PWR_OK	DC-DC1poweroutputstatusindication0:nooutput or voltage is lower thannormal value at present	R	X

		1:output voltage is OK at present		
		DC-DC2 power output status		
		indication		
13	DC-DC2_PWR_OK	0:no output or voltage is lower than	R	х
		normal value at present		
	 	1:output voltage is OK at present		
		DC-DC3 power output status		
		indication		
12	DC-DC3_PWR_OK	0:no output or voltage is lower than	R	х
		normal value at present		
		1:output voltage is OK at present		
		DC-DC4 power output status		
		indication		
11	DC-DC4_PWR_OK	0:no output or voltage is lower than	R	Х
		normal value at present		
		1:output voltage is OK at present		
		LDO0 power output status indication		
10	TDOU DWD OK	0:no output or voltage is lower than	D	v
10	LDO0_PWR_OK	normal value at present	К	х
		1:output voltage is OK at present		
		LDO1 power output status indication		
0		0:no output or voltage is lower than	R	v
7		normal value at present	K	Λ
		1:output voltage is OK at present		
		LDO2 power output status indication		
8	IDOJ PWR OK	0:no output or voltage is lower than	R	v
0	LDO2_I WK_OK	normal value at present	ĸ	Λ
		1:output voltage is OK at present		
		LDO3 power output status indication		
7	IDO3 PWR OK	0:no output or voltage is lower than	R	v
/	LDOJ_I WK_OK	normal value at present	K	Λ
		1:output voltage is OK at present		
		LDO4 power output status indication		
6	IDO4 PWR OK	0:no output or voltage is lower than	R	v
U		normal value at present	K	Λ
		1:output voltage is OK at present		
5	-	Reserved	-	-
		LDO6 power output status indication		
4		0:no output or voltage is lower than	D	v
	LDO6_PWR_OK	normal value at present	ĸ	Х
		1:output voltage is OK at present		
		LDO7 power output status indication		
3	LDO7_PWR_OK	0:no output or voltage is lower than	R	х
		normal value at present		

		1:output voltage is OK at present		
		LDO8 power output status indication		
2	LDOS DWD OK	0:no output or voltage is lower than	D	V
2	LDO6_FWK_OK	normal value at present	K	X
		1:output voltage is OK at present		
	PWR_ON_SCALING	When entering S1 from Standby, time	RW	0
		interval of every power step		
1.0		00:1ms		
1.0		01:2ms		
		10:4ms		
		11:8ms		

7.4.48 **PMU_S2_PWR**

PMU_PWR_STATUS Register (RTCVDD) (default 0x2000)

Offset = 0x81

Bit(s)	Name	Description	Access	Reset
		Whether DC-DC0 is forced to shut		
15		down in S2	DW	0
15	S2_DC-DC0_PWK_EN	0:forced to shutdown	KW	0
		1:remain the power state in S1		
		Whether DC-DC1 is forced to shut		
14	S2 DC-DC1 PWR EN	down in S2	RW	0
14	S2_DC-DC1_I WK_EN	0:forced to shutdown	IX VV	0
		1:remain the power state in S1		
		Whether DC-DC2 is forced to shut		
13	S2 DC-DC2 PWR EN	down in S2	RW	1
15	S2_DC-DC2_FWR_EN	0:forced to shutdown	κ.w	1
		1:remain the power state in S1		
		Whether DC-DC3 is forced to shut		
12	S2 DC-DC3 PWR FN	down in S2	RW	0
12	S2_DC-DC5_I WK_EN	0:forced to shutdown		0
		1:remain the power state in S1		
		Whether DC-DC4 is forced to shut		
11	S2 DC-DC4 PWR FN	down in S2	RW	0
11		0:forced to shutdown		0
		1:remain the power state in S1		
		Whether LDO0 is forced to shut down		
10	S2 LDO0 PWR EN	in S2	RW	0
	S2_LDO0_PWK_EN	0:forced to shutdown		0
		1:remain the power state in S1		
9	S2 I DO1 PWR FN	Whether LDO1 is forced to shut down	RW	0
9 52	52_LDUI_PWK_EN	in S2	ĸw	0

		0:forced to shutdown		
		1:remain the power state in S1		
8:7	-	Reserved	-	-
		Whether LDO4 is forced to shut down		
6	S2 LDO4 DWD EN	in S2	DW	0
0	S2_LDO4_PWK_EN	0:forced to shutdown	ĸw	0
		1:remain the power state in S1		
5	-	Reserved	-	-
		Whether LDO6 is forced to shut down		
1	S2_LDO6_PWR_EN	in S2	DW	0
4		0:forced to shutdown	KW	
		1:remain the power state in S1		
	S2_LDO7_PWR_EN	Whether LDO7 is forced to shut down	RW	0
3		in S2		
5		0:forced to shutdown		
		1:remain the power state in S1		
		Whether LDO8 is forced to shut down		
2	S2 IDOS DWD EN	in S2	DW	0
2	S2_LDO8_PWR_EN	0:forced to shutdown	KW	U
		1:remain the power state in S1		
1	-	Reserved	-	-
0		0:power supplies power off at the same		
	PWR_OFF_SCH	time	RW	0
		1:power supplies power off according to		0
		a reversed sequence of power on		

7.4.49 CLMT_CTL0

CLMT_CTL0 Register (RTCVDD) (default 0x8001)

Offset = 0x82

Bit(s)	Name	Description	Access	Reset
		Setting the time of Qmax should stay in Standby		
		mode before being updated		
15.14	TIMED	00: 1h	DW	02
13.14	TIMEK	01: 3h	ΚW	UX2
		10: 5h		
		11: 7h		
13:2	U_STOP	Lowest battery voltage for system operation	RW	0
		Coulombmeter system information initialization		
		enable		
1	INIT_DATA_EN	1:Enable (info is initialized)	RW	0
		0:Disable (indicating the info is not initialized)		
		When the software is powered up, value of this bit		

		should be read first, if it is 0, before setting this bit to 1, CLMT_CTL[13:2], CLMT_DATA0, CLMT_OCV_TABLE, CLMT_R_TABLE should be set first, then 1sec later, the output of Coulombmeter becomes valid		
0	CLMT EN	Coulombmeter 1:Enable	RW	1
-		0:Disable		

7.4.50 CLMT_DATA0

CLMT_DATA0 Register (RTCVDD) (default 0x0000)

Offset = 0x83

Bit(s)	Name	Description	Access	Reset
15:0	Q_MAX	Total amount of Li-Ion battery	RW	0

7.4.51 CLMT_DATA1

CLMT_DATA1 Register (RTCVDD) (default 0x0000)

Offset = 0x84

Bit(s)	Name	Description	Access	Reset
15	-	Reserved	-	-
14:8	SOCR	Actual battery power remained in percentage (percentage step:1%) 0000000: 0% 1100100: 100% 1100101: Reserved 1111111: Reserved	R	0
7	-	Reserved	-	-
6:0	SOCA	Usable battery power remained in percentage (percentage step:1%) 0000000: 0% 1100100: 100% 1100101: Reserved 1111111: Reserved	R	0

7.4.52 CLMT_DATA2

CLMT_DATA2 Register (RTCVDD) (default 0x0000)

Offset = 0x85

Bit(s)	Name	Description	Access	Reset
15:0	QR	Actual battery power remained	R	0

7.4.53 CLMT_DATA3

CLMT_DATA3 Register (RTCVDD) (default 0x0000)

Offset = 0x86

Bit(s)	Name	Description	Access	Reset
15:0	QA	Usable battery power remained	R	0

7.4.54 **PMU_ADC12B_I**

PMU_ADC12B_I Register (RTCVDD) (default 0x0000)

Offset = 0x56

Bit(s)	Name	Description	Access	Reset
15:14	-	Reserved	-	-
13:0	DATA_ICM	Value of CM detection current	R	х

7.4.55 **PMU_ADC12B_V**

PMU_ADC12B_V Register (RTCVDD) (default 0x0000)

Offset = 0x57

Bit(s)	Name	Description	Access	Reset
15:12	-	Reserved	-	-
11:0	DATA_VCM	Value of CM detection voltage	R	X

7.4.56 CLMT_OCV_TABLE

CLMT_OCV_TABLE Register (RTCVDD) (default 0x0000)

Offset = 0x89

Bit(s)	Name	Description	Access	Reset
15:12	OCV_SEL	Setting up the OCV&SOC contrast table Select the electricity quantity percentage SOC, then writing bit[11:0] in SOC of the relative voltage OF OCV	RW	0

		0000: 0%		
		0001: 4%		
		0010: 8%		
		0011: 12%		
		0100: 16%		
		0101: 20%		
		0110: 28%		
		0111: 36%		
		1000: 44%		
		1001: 52%		
		1010: 60%		
		1011: 68%		
		1100: 76%		
		1101: 84%		
		1110: 92%		
		1111: 100%		
		The electricity quantity is n% (n is decided by		
11.0	OCV_N	bit[15:12]), the relative OCV battery voltage(mV)	DW	0
11.0		Note: 0000000000 is invalid, can't be written in to	КW	0
		registers		

7.4.57 CLMT_R_TABLE

CLMT_R_TABLE Register (RTCVDD) (default 0x0000)

DIU(S)	Name	Description	Access	Reset
15:12	Name R_SEL	DescriptionSetting up the battery inner resister R&SOC contrast table:Choose the electricity quantity percentage SOC, then writing the SOC relative battery inner resister into bit[10:0]0000: 0%0001: 4%0010: 8%0011: 12%0100: 16%0110: 28%0111: 36%1000: 44%1001: 52%	Access	Reset

		1100: 76%		
		1101: 84%		
		1110: 92%		
		1111: 100%		
11	-	Reserved	-	-
		The electricity quantity is n% (n is decided by		
10:0	R_N	bit[15:12]), the relative inner battery resistor(mOhm)	DW	0
		Note: 0000000000 is invalid, can't be written in to	IX VV	0
		registers		

8 Auxiliary ADC

8.1 Module Description

ATC2609 integrates a 12-bit, 16-channel Analog-to-Digital Converter (ADC), which converts one of the 16 analog inputs to 12-bit digital data, the application of each bit is listed below:

ADC_0	ADC_1	ADC_2	ADC_3	ADC_4	ADC_5	ADC_6	ADC_7
IREF	ICHG	VBUS	WALLI	BATI	REM_CO	ICTEMP	SVCC
					Ν		
ADC_8	ADC_9	ADC_10	ADC_11	ADC_12	ADC_13	ADC_14	ADC_15
Reserved	SYSPWRV	WALLV	VBUSV	Reserved	Reserved	AUXADC	AUXADC
						1	0

Table 8-1 AUXADC functional specifications

WALL, SYSPWR and VBUS will pass a 2.5 voltage divider before sent to ADC, so the formula for WALL, SYSPWR, VBUS voltage (V) that relates their ADC output (DATA) can be described by: V = DATA*LSB*2.5

While BAT will pass a 2 voltage divider before sent to ADC, so the relationship between BAT voltage and its ADC output is:

V = DATA * LSB * 2

In addition, ADC also detects the current from VBUS to SYSPWR, current from BAT to SYSPWR, charger's charging current, SVCC voltage, battery temperature and etc. The full current range of BATI, WALLI, ICHG and VBUSI ADCs are all 4000mA, thus the current can be expressed as follows, where DATA is the ADC digital output:

$$I = DATA * LSBI = DATA * 4000 / 4096(mA)$$

ICTEM ADC value is sensitive to manufacturing process, the deviation value will be written into PMU_AUXADC_CTL1 register by software, and then software can get the calibrated temperature data ICTEMPADC_ADJ from the register PMU_ICTEMPADC . The relationship between IC Temperature (TEMP) and ICTEMP's ADC data can be expressed as follows:

 $TEMP = 0.051 * (DATA + ICTEMPADC ADJ - 1333)(^{\circ}C)$

For the REM_CON, the voltage of each button can be calculated as follow:

Vrem
$$con = (DATA/4096) * SVCC$$

Where DATA is from the register PMU_REMCONADC.

AUXADC0~1 are for general use.

8.2 Register List

Table 8-2 AUXADC Block Address

Name	Base Address
AUXADC	0x0000

Offset	Register Name	Description
0x59	PMU_AUXADC_CTL0	PMU AuxADC CONTROL Register0
0x5A	PMU_AUXADC_CTL1	PMU AuxADC CONTROL Register1
0x5B	PMU_BATVADC	PMU BATVADC Register
0x5C	PMU_BATIADC	PMU BATIADC Register
0x5D	PMU_WALLVADC	PMU WALLVADC Register
0x5E	PMU_WALLIADC	PMU WALLIADC Register
0x5F	PMU_VBUSVADC	PMU VBUSVADC Register
0x60	PMU_VBUSIADC	PMU VBUSIADC Register
0x61	PMU_SYSPWRADC	PMU SYSPWRADC Register
0x62	PMU_REMCONADC	PMU RemConADC Register
0x63	PMU_SVCCADC	PMU SVCCADC Register
0x64	PMU_CHGIADC	PMU CHGIADC Register
0x65	PMU_IREFADC	PMU IREFADC Register
0x67	PMU_ICTEMPADC	PMU ICTEMPADC Register
0x68	PMU_AUXADC0	PMU AuxADC0 Register
0x69	PMU_AUXADC1	PMU AuxADC1 Register
0x6C	PMU_ICTEMPADC_ADJ	PMU ICTEMPADC ADJUST Register

Table 8-3 AUXADC Controller Registers

8.3 Register Description

8.3.1 PMU_AUXADC_CTL0

PMU_AuxADC_CTL0 Register (RTCVDD) (default 0xFFFF)
Offset = 0x59	

Bit(s)	Name	Description	Access	Reset
		AUXADC0 ADC enable		
15	AUXADC0_EN	0: disable	RW	1
		1: enable		
		AUXADC1 ADC enable		
14	AUXADC1_EN	0: disable	RW	1
		1: enable		
13:12	-	Reserved	-	-
		VBUS VOLATGE ADC enable		
11	VBUSVADC_EN	0: disable	RW	1
		1: enable		
10	WALLVADC_EN	WALL VOLATGE ADC enable	RW	1

		0: disable		
		1: enable		
		SYSPWR VOLATGE ADC enable		
9	SYSPWRADC_EN	0: disable	RW	1
		1: enable		
8	-	Reserved	-	-
		SVCC ADC enable		
7	SVCC_ADC_EN	0: disable	RW	1
		1: enable		
		TEMP ADC enable		
6	ICTEMP_ADC	0: disable	RW	1
		1: enable		
		REMCON ADC enable		
5	REMCON_ADC_EN	0: disable	RW	1
		1: enable		
		BAT CURRENT ADC enable		
4	BATIADC_EN	0: disable	RW	1
		1: enable		
		WALL CURRENT ADC enable		
3	WALLIADC_EN	0: disable	RW	1
		1: enable		
		VBUS CURRENT ADC enable		
2	VBUSIADC_EN	0: disable	RW	1
		1: enable		
		Charger current ADC enable		
1	CHGIADC_EN	0: disable	RW	1
		1: enable		
		CURRENT REF ADC enable		
0	IREFADC_EN	0: disable	RW	1
		1: enable		

8.3.2 PMU_AUXADC_CTL1

PMU_AuxADC_CTL1 Register (RTCVDD) (default 0x0100) Offset = 0x5A

Bit(s)	Name	Description	Access	Reset
15:9	-	Reserved	-	-
		PMU_ADC enable		
8	PMU_ADC_ENABLE	0:disable	RW	1
		1:enable		
		Data average Filter for 16 mux ADC:		
7	DATA_AVERAGE_FILTER	0:disable	RW	0
		1:enable		

6:2	-	Reserved	-	-
	SELECT REFERENCE	Select ADC reference:		
		0: reference from internal circuit	RW	
1		1: reference source from external		0
1		circuit trough 3 pins, their value are		
		22.5, 1.5, 0.75 separately. Or load $1\mu F$		
		capacitor on this pin		
0	-	Reserved	-	-

8.3.3 PMU_BATVADC

PMU_BATADC Register (RTCVDD) (default 0x0000)

Offset = 0x5B

Bit(s)	Name	Description	Access	Reset
15:12	-	Reserved	-	-
11:0	BATVADC	BATVADC data	R	x

8.3.4 PMU_BATIADC

PMU_BATIADC Register (RTCVDD) (default 0x0000)

Offset = 0x5C

Bit(s)	Name	Description	Access	Reset
15:12	-	Reserved	-	-
11:0	BATIADC	BATIADC data	R	x

8.3.5 PMU_WALLVADC

PMU_WALLADC Register (RTCVDD) (default 0x0000)

Offset = 0x5D

Bit(s)	Name	Description	Access	Reset
15:12	-	Reserved	-	-
11:0	WALLVADC	WALLVADC data	R	x

8.3.6 PMU_WALLIADC

PMU_WALLIADC Register (RTCVDD) (default 0x0000)

Offset = 0x5E

Bit(s)	Name	Description	Access	Reset
15:12	-	Reserved	-	-

11:0	WALLIADC	WALLIADC data	R	х

8.3.7 PMU_VBUSVADC

PMU_VBUSADC Register (RTCVDD) (default 0x0000)

Offset = 0x5F

Bit(s)	Name	Description	Access	Reset
15:12	-	Reserved	-	-
11:0	VBUSVADC	VBUSVADC data	R	Х

8.3.8 PMU_VBUSIADC

PMU_VBUSIADC Register (RTCVDD) (default 0x0000)

Offset = 0x60

Bit(s)	Name	Description	Access	Reset
15:12	-	Reserved	-	-
11:0	VBUSIADC	VBUSIADC data	R	Х

8.3.9 PMU_SYSPWRADC

PMU_SYSPWRADC Register (RTCVDD) (default 0x0000)

Offset = 0x61

Bit(s)	Name	Description	Access	Reset
15:12	-	Reserved	-	-
11:0	SYSPWRADC	SYSPWRADC data	R	х

8.3.10 PMU_REMCONADC

PMU_REMCONADC Register (RTCVDD) (default 0x0000)

Offset = 0x62

Bit(s)	Name	Description	Access	Reset
15:12	-	Reserved	-	-
11:0	REMCONADC	REMCON ADC data	R	х

8.3.11 PMU_SVCCADC

PMU_SVCCADC Register (RTCVDD) (default 0x0000) Offset = 0x63

Bit(s)	Name	Description	Access	Reset
15:12	-	Reserved	-	-
11:0	SVCCADC	SVCC ADC data	R	Х

8.3.12 PMU_CHGIADC

PMU_CHGIADC Register (RTCVDD) (default 0x0000)

Offset = 0x64

Bit(s)	Name	Description	Access	Reset
15:12	-	Reserved	-	-
11:0	CHGIADC	CHGIADC data	R	Х

8.3.13 PMU_IREFADC

PMU_IREFADC Register (RTCVDD) (default 0x0000)

Offset = 0x65

Bit(s)	Name	Description	Access	Reset
15:12	-	Reserved	-	-
11:0	IREFADC	IREFADC data	R	х

8.3.14 PMU_ICTEMPADC

PMU_ICTEMPADC Register (RTCVDD) (default 0x0000)

Offset = 0x67

Bit(s)	Name	Description	Access	Reset
15:12	-	Reserved	-	-
11:0	ICTEMPADC	ICTEMPADC ADC data	R	X

8.3.15 PMU_AUXADC0

PMU_AuxADC0 Register (RTCVDD) (default 0x0000)

Offset = 0x68

Bit(s)	Name	Description	Access	Reset
15:12	-	Reserved	-	-
11:0	AUXADC0	AuxADC0 data	R	х

8.3.16 PMU_AUXADC1

PMU_AuxADC1 Register (RTCVDD) (default 0x0000)

Offset = 0x69

Bit(s)	Name	Description	Access	Reset
15:12	RESERVED	RESERVED	R	0
11:0	AUXADC1	AUXADC1 data	R	X

8.3.17 PMU_ICTEMPADC_ADJ

PMU_ICTEMPADC_ADJ Register (RTCVDD) (default 0x0000)

Offset = 0x6C

Bit(s)	Name	Description	Access	Reset
15:8	-	Reserved	-	-
7:0	ICTEMPADC_ADJ	ICTEMPADC correction bit	RW	0

9 Clock Management Unit

9.1 Universal Clock

9.1.1 Register List

 Table 9-1 CMU Register Address

Name	Base Address
CMU_CONTROL_REGISTER	0xC0

Offset	Register Name	Description
0x01	CMU_DEVRST	Device Reset Control Register

9.1.2 Register Description

9.1.2.1 CMU_DEVRST

Device Reset Control Register

Offset = 0x01

Bit(s)	Name	Description	Access	Reset
15:9	-	Reserved	-	-
		SCLK to Audio Clock Enable Control bit:		
8	AUDIO_CLK_EN	0:Disable	RW	0
		1:Enable		
7:3	-	Reserved	-	-
2	INTS_RST	INTS block reset	RW	1
1	MFP_RST	MFP/GPIO control block reset	RW	1
0	AUDIO_RST	Audio block reset	RW	1

Note: write 0 to reset the block.

9.2 Real Time Clock

RTC module provides system timing and alarm functions, it supports power-off and power-on by alarm. Its clock is based on 32.768 kHz oscillator, which can be provided by a built-in or external oscillator, and the external OSC is used by default.

At the system power on the internal OSC is used, then there is a process of selecting clock source, if an oscillatory waveform is detected at LOSC, the detect circuit will delay about 1ms and then set

RTC_CTL[3] to 1, and external OSC is selected. If no waveform is detected at LOSC, the detect circuit will delay about 3ms and set RTC_CTL[3] to 0, internal OSC will be selected.

Whether the system is in Standby or normal working mode, if the system chooses the external LOSC but the external LOSC stopped working, RTCVDD_OK will be pulled down and then the whole system will be reset. Powered on next time, the system will use internal OSC by default.

9.2.1 Module Description

32kHz Oscillator

An external 32.768 kHz crystal oscillator should be supplied to ATC2609 system to get an accurate clock for Real Time Clock (RTC) and an alarm function capable of waking up the system. If the requirement for 32.768 kHz clock is not too accurate, the system will choose the built-in oscillator instead of the external 32.768 kHz oscillator.

Figure 9-3 LOSC block diagram

Calendar

When RTCE=1, RTC_H, RTC_MS and RTC_YMD clock is based on LOSC_CLK, Master can only read the registers to get the current time in this case. When RTCE=0, the registers can be written to set the current time.

Alarm

When RTCE=ALIE=1, if RTC_HALM=RTC_H, RTC_MSALM=RTC_MS and RTC_YMDALM = RTC_YMD, an Alarm IRQ will be generated, which can be cleared by setting ALIP to 1.

9.2.2 Register List

Table 9-1 RTC Block Address

Name	Base Address
RTC	0x0000

 Table 9-2 RTC Controller Registers

Tuble 7-2 KTC Controller Registers				
Offset	Register Name	Description		

0x6E	RTC_CTL	RTC control register
0x6F	RTC_MSALM	RTC ALARM Minute second register
0x70	RTC_HALM	RTC ALARM Hour register
0x71	RTC_YMDALM	RTC ALARM Year month date register
0x72	RTC_MS	RTC Minute second register
0x73	RTC_H	RTC Hour register
0x74	RTC_DC	RTC day century register
0x75	RTC_YMD	RTC year month date register

9.2.3 Register Description

9.2.3.1 RTC_CTL

Calendar Control Register (RTCVDD) (default 0x5A50) Offset=0x6E

Bit(s)	Name	Description	Access	Reset
15:14	LGS	Low frequency crystal oscillator GMNIN select bits	RW	1
		LOSC Capacitor Select:		
		00:12pF		
13:12	LOSC_CP	01:15pF	RW	1
		10:18pF		
		11:21pF		
		RTC Reset		
11	RST	1: Normal	RW	1
		0: Reset		
		RTC Verify Clock Enable		
10	* /T"D I	Switch RTC clock to 32kHz	DW	
10	VERI	1: Enable	KW	0
		0: Disable		
		RTC Leap Year bit		
9	LEAP	1: leap year	R	1
		0: non-leap year		
8:7	-	Reserved	-	-
		External Crystal OSC enable		
6	EOSC	1: Enable	RW	1
		0: Disable		
		RTC 32kHz clock Source Select		
5	CKSS0	1: External Crystal OSC	RW	0
		0: Built-in OSC		
		RTC Enable		
4	RTCE	1: Enable	RW	1
		0: Disable		

		External LOSC State:		
3	EXT_LOSC_STATE	0:external LOSC stop Oscillating	R	Х
		1:external LOSC is Oscillating		
2	-	Reserved	-	-
		Alarm IRQ Enable		
1	ALIE	1: Enable	RW	0
		0: Disable		
0	ALIP	Alarm IRQ Pending bit, writing 1 to this bit will clear it	RW	0

Note:

- 1. Bit[5] CKSS0: only when RTCVDD is completely powered off, will CKSS0 be reset.
- 2. Calendar and Alarm module need precise low frequency clock, so an external crystal OSC is applied in application.
- 3. Bit[13:12] LOSC_CP: LOSC circuit matching capacitor selection should refer to the load capacitor of the external crystal OSC, a default value of 01 or 10 is used in general.
- 4. Bit[15:14] LGS: this bit is the LOSC circuit driving ability enhancing bit, the driving strength can be sorted as 2b11>2b10>2b01>2b00, the default value is recommended.
- 5. Bit[3] EXT LOSC STATE: the state bit of external starting LOSC oscillating.

9.2.3.2 RTC_MSALM

Calendar MSALM Register (RTCVDD) (default 0x0000)

Offset=0x6F

Bit(s)	Name	Description	Access	Reset
15:12	-	Reserved	-	-
11:6	MINAL	Alarm minute setting 0x00 : 0x3B	RW	0
5:0	SECAL	Alarm second setting 0x00 : 0x3B	RW	0

9.2.3.3 RTC_HALM

Calendar HALM Register (RTCVDD) (default 0x0000)

Offset=0x70

Bit(s)	Name	Description	Access	Reset
15:5	-	Reserved	-	-
4:0	HOUEAL	Alarm hour setting 0x00:0x17	RW	0

9.2.3.4 RTC_YMDALM

Calendar YMDALM Register (RTCVDD) (default 0x0000)

Offset=0x71

Bit(s)	Name	Description	Access	Reset
15:9	YEARAL	Alarm year setting 0x00:0x63	RW	0

8:5	MONA	Alarm month setting 0x01:0x0C	RW	0
4:0	DATEAL	Alarm day setting 0x01:0x1F	RW	0

9.2.3.5 RTC_MS

Calendar MS Register (RTCVDD) (default 0x0000)

Offset=0x72

Bit(s)	Name	Description	Access	Reset
15:12	-	Reserved	-	-
11:6	MIN	Time minute setting 0x00:0x3B	RW	0
5:0	SEC	Time second setting 0x00:0x3B	RW	0

9.2.3.6 RTC_H

Calendar HOUR Register (RTCVDD) (default 0x0000)

Offset=0x73

Bit(s)	Name	Description	Access	Reset
15:5	-	Reserved	-	-
4.0	HOUR	Time hour setting	RW	0
4.0	HOOK	0x00:0x17	1	U

9.2.3.7 RTC_DC

Calendar DC Register (RTCVDD) (default 0x0080)

Offset=0x74

Bit(s)	Name	Description	Access	Reset
15:10	-	Reserved	-	-
9:7	DAV	Time day setting	DW	1
	DAI	0x01:0x07	κ.w	1
6:0	CENT	Time setting	DW	0
	CENT	0x00:0x63	ΚW	- 1 0

9.2.3.8 RTC_YMD

Calendar YMD Register (RTCVDD) (default 0x0021)

Bit(s)	Name	Description	Access	Reset
15:9	VEAD	Time year setting	DW	Reset 0 1
	IEAK	0x00:0x63	ĸw	0
8:5	MON	Time month setting	DW	1
	MON	0x01H:0x0C	ĸw	0 1 1
4:0	DATE	Time day setting	DW	1
	DAIE	0x01:0x1F	ĸw	1

10 Infrared Remote Controller

10.1 Features

ATC2609 Infrared Remote Controller (IRC) module Support RC5/9012/NEC(8-bit)/RC6 protocol, the sample clock is 32.576kHz. IRC is connected with an Infrared Remote (IR) receiver, only when the received key data is equal to the IRC_WK register's data, including NEC, 9012, RC5 and RC6 mode, can IRC wake up the system by generating a wake up signal to PMU.

10.2 Modules Description

10.2.1 9012 Protocol

The 9012 protocol adopts Pulse Distance Modulation. Each pulse is one Tm (560µs) 38kHz carrier burst, and LSB is transmitted first. Logic 1 takes 4Tm (2.25ms) to transmit, and logic 0 only takes 2Tm (1.12ms). A message is started by 8Tm (4.5ms) AGC burst, used to set the gain of the front IR receivers. Customer code and Command code length is both 8-bit, and they are transmitted twice to ensure the reliability of the transmission. And in the second time, Command code is inverted to Anti-code to verify the received messages.

Figure 10-1 9012 Protocol of Frame

Below are some values for reference: Recommended carrier duty-cycle = 1/4 or 1/3. Tm = 256/Fosc = 0.56ms (Fosc=455kHz) Repetition time = 192Tm = 108msCarrier frequency = Fosc/12

Figure 10-2 9012 Protocol of Logic transmission

When the key on the remote controller remains pressed down, the command will be transmitted only once, even a repeat code is transmitted every 192Tm as long as the key remains pressed down. This repeat code is a 8Tm (4.5ms) AGC pulse followed by a 8Tm (4.5ms) space and a logic 1 and 1Tm

(560µs) burst.

Figure 10-3 9012 Protocol of Repeat Code

10.2.2 NEC Protocol (8-bit)

The NEC protocol adopts Pulse Distance Modulation. Each pulse is one Tm (560µs) 38kHz carrier burst, and LSB is transmitted first. Logic 1 takes 4Tm (2.25ms) to transmit, logic 0 only takes 2Tm (1.12ms). A message is started by 16Tm (9ms) AGC burst, which was used to set the gain of the front IR receivers. This AGC burst is followed by 8Tm (4.5ms) space, and then the Customer and Command code. Customer and Command codes are both 8-bit, they are transmitted twice for reliability; the second customer and command code are inverted to Anti-code to verify the received message. The whole transmission time is constant because every bit is repeated with its inverted length.

Figure 10-4 NEC Protocol of Frame

Below are some values for reference: Recommended carrier duty-cycle: 1/4 or 1/3 Tm = 256/Fosc = 0.56ms (Fosc=455kHz) Repetition time = 192Tm = 108ms Carrier frequency = Fosc/12

Figure 10-5 NEC Protocol of Logic transmission

When the key on the remote controller remains pressed down, the command will be transmitted only once, even a repeat code is transmitted every 192Tm as long as the key remains pressed down. This repeat code is a 16Tm (9ms) AGC pulse followed by a 4Tm (2.25ms) space and a Tm (560µs) burst.

Figure 10-6 NEC Protocol Repeat Code

10.2.3 RC5 Protocol

The RC5 protocol adopts Bi-phase Modulation (or Manchester coding) of 38kHz IR carrier frequency. Transmission time of each bit is 1.8ms in this protocol, in which half of the transmission time is for the 38kHz carrier and the other half being idle. Logic 0 is a burst in the first half of the transmission time, logic 1 is a burst of the second half of the transmission time; see in Figure 10-7 below. The pulse/pause ratio of the 38kHz carrier frequency is 1/3 or 1/4, which reduced the power consumption.

Figure 10-7 RC5 Protocol Logic

Below are some values for reference:

Figure 10-8 RC5 Protocol Frame

The first two pulses are start pulses, both are logic 1. Half of the transmission time will be elapsed before the receiver recognizes the real start of the message. The third bit is a toggle bit, this bit is inverted every time a key is released and pressed again. This is how the receiver distinguishes whether the key remains pressed down or repeatedly pressed. The next 5-bit Customer code represents the IR device's address, with MSB sent first. The following 6-bit command code is sent with MSB first, too. One message is 14 bits in total, which adds up to time duration of 28Tm. Sometimes a message may be shorter because the first half of the start bit S1 is idle, and if the last bit of the message is logic 0 the last half bit of the message is idle too. As long as a key remains down the message will be repeated every 128Tm (108ms). The toggle bit will remain the same logic during these repeated

messages. And this auto repeat feature can be configured by the receiver software.

Figure 10-9 RC5 Protocol of Repetition time

10.2.4 RC6 Protocol

The RC6 Protocol of mode 0 is supported only. RC-6 signals are modulated on a 36 kHz Infrared Red carrier. The duty cycle of this carrier is recommended between 25% and 50%. Transmission data is modulated using Manchester coding. This means that each bit (or symbol) will have both a mark and space in the output signal. If the symbol is 1, the first half of the bit time is a mark and the second half is a space. If the symbol is 0, the first half of the bit time is a space and the second half is a mark. The main timing unit is 1T, which is 16 times the carrier period (1/36kHz * 16 = 444µs) $1T = 1*16/36kHz = 444\mu s$

 $1Bit = 2T = 888\mu s$

Total transmission time (22 Bits) = 23.1ms(message) + 2.7ms (no signal)

Repetition time = 240T = 106.7ms

LS	SB	mb2 m	nbO	ΤR	a7 a0	c7 c0	
	ŀ	leader			Control	Information	Signal free

Figure 10-10 RC6 Protocol

The RC6 Protocol frame can be separated into four fields: Header, Control, Information and Signal free field. The signal free field is not used.

Header Field:

Figure 10-11 RC6 Protocol of Signal Frame

This leader bit is the start bit used to set the gain of the IR receiver unit, which has a mark time of 6T (2.666ms) and a space time of 2T (0.889ms).

Figure 10-12 RC6 Protocol of Leader Bit

The normal bit, 0 and 1 are encoded by the position of the mark and space in the bit time, in which mark time is 1T (0.444ms) and space time is 1T (0.444ms).

Figure 10-13 RC6 Protocol of Normal Bit

The trailer bit TR has a mark time of 2T (0.889ms) and a space time of 2T (0.889ms). Same, 0 and 1 are encoded by the position of the mark and space in the bit time. This bit functions like the traditional toggle bit, which will be inverted whenever a key is released. This bit separates a long key-press from a double key-press.

Figure 10-14 RC6 Protocol of Trailer Bit

Control field:

This field holds 8 bits which are used as address byte. This means that a total of 256 different devices can be controlled using mode 0 of RC-6. The MSB is transmitted first.

Information field:

The information field holds 8 bits which are used as command byte. This means that each device can have up to 256 different commands. The MSB is transmitted first.

10.3 Register List

Name	Base Address
IRC	0x0000

Offset	Register Name	Description
0x90	IRC_CTL	Infrared remote control register
0x91	IRC_STAT	Infrared remote status register
0x92	IRC_CC	Infrared remote control customer code register
0x93	IRC_KDC	Infrared remote control KEY data code register
0x94	IRC_WK	Infrared remote control wake up KEY data code register

Table 10-2 IRC Controller Registers

0x95 IRC RCC

Infrared remote control Receive Customer Code register

10.4 Register Description

10.4.1 IRC_CTL

Infrared remote control register (RTCVDD) (default 0x0000)

Offset = 0x90

Bit(s)	Name	Description	Access	Reset
15:4	-	Reserved	-	-
		IRC enable		
3	IRE	0: disable	RW	0
		1: enable		
		IRC IRQ enable		
2	IIE	0: disable	RW	0 0 0 0 0
		1:enable		
		IRC code mode select		
		00: 9012 code		
1:0	ICMS	01: 8bits NEC code	RW	0
		10: RC5 code		0 0 0 0
		11: RC6 code		

10.4.2 IRC_STAT

Infrared remote control register (RTCVDD) (default 0x0000)

Offset = 0x91

Bit(s)	Name	Description	Access	Reset
15:7	-	Reserved	-	-
		User code don't match pending bit. Write 1 to		
		this bit will clear it, or auto clear if receive the		
6	UCMP	correct user code the next time.	RW	0
		0: user code match		
		1: user code don't match		
		Key data code don't match pending bit. Write 1		
		to this bit will clear it, or auto clear if receive the		
5	KDCM	correct key data code the next time	RW	0
		0: key data code match		
		1: key data code don't match		
4		Repeated code detected, write 1 to this bit will		
	RCD	clear it, otherwise don't change	RW	0
		0: no repeat code		

		1: detect repeat code		
3	-	Reserved	-	-
2	IIP	IRC IRQ pending bit, write 1 to this bit will clear it 0: no IRQ pending 1: IRQ pending The precondition of generating interrupt is all the received code is right, including user code and key, and, if the user code and key value is not correct, the repeat code following this frame won't generate interrupt.	RW	0
1	-	Reserved	-	-
0	IREP	IRC receive error pending0: receive OK1: receive error occurs if not match the protocol.Writing 1 to this bit will clear this bit, or auto clear if receive the correct user code and key data code the next time.	RW	0

10.4.3 IRC_CC

Infrared remote control customer code register (RTCVDD) (default 0x0000) Offset = 0x92

Bit(s)	Name	Description	Access	Reset
		Infrared remote control customer code		
		In RC5 mode:		
		Bit[4:0] is the customer code		
		In 9012 and NEC mode:		
15:0	ICCC	Bit[15:0] is the customer code,	RW	0
		In RC6 mode:		
		Bit 7:0 is the customer code.		
		If the received customer code does not comply		
		with this register value, error occurs.		

10.4.4 IRC_KDC

Infrared remote control KEY data code register (RTCVDD) (default 0x0000)

Offset = 0x93

Bit(s)	Name	Description	Access	Reset
		IRC key data code	RW	0
15:0	IKDC	In RC5 mode:		
		Bit 5:0 is the Key data		

In 9012 and NEC mode:	
Bit 7:0 is the Key data; Bit 15:8 is the Key	
anti-data	
In RC6 mode:	
Bit 7:0 is the Key data;	
If key data is received, the register will be	
updated; If repeat code is received, the register	
will not update.	

10.4.5 IRC_WK

Infrared remote control wake up KEY data code register (RTCVDD) (default 0x0000) Offset = 0x94

Bit(s)	Name	Description	Access	Reset
		IRC wake up key data code		
		In RC5 mode:		
		Bit[5:0] is the wake up Key data		
		In 9012 and NEC mode:		
15:0	IKDC	Bit[15:0] is the wake up key data;		
		Bit[7:0] is the Key data; Bit[15:8] is the Key anti-data	RW	0
		In RC6 mode:		
		Bit 7:0 is the wake up key data.		
		If the received key value is same with this register, wake up		
		signal will be generated and sent to PMU, an interrupt		
		signal will be generated at the same time.		

10.4.6 IRC_RCC

Receive customer code register (RTCVDD) (default 0x0000)

Offset = 0x95

Bit(s)	Name	Description	Access	Reset
		Received customer code		
	In RC5 mode: Bit[4:0] is the customer code In RC5 mode: Bit[4:0] is the customer code In P012 and NEC mode: R	In RC5 mode:		
		Bit[4:0] is the customer code		
15:0		R	0	
		Bit[15:0] is the customer code		
		In RC6 mode:		
		Bit[7:0] is the customer code		

11 Interrupt Controller

11.1 Features

Interrupt Controller (INTC) module can receive and handle 16 Interrupt signals sent through pin EXTIRQ. Table 11-1 lists all the interrupt sources. Details about these interrupts can be found in relevant sections. Please refer to the register INTS_PD to get interrupt that has happened, besides, any of these 16 interrupts can be masked by setting register INTS MSK.

Interrupt Number	Sources	Туре
0	AUDIO	High Level
1	OV	High Level
2	OC	High Level
3	OT	High Level
4	UV	High Level
5	ALARM	High Level
6	ONOFF	High Level
7	WKUP	High Level
8	IR	High Level
9	REMCON	High Level
10	POWERIN	High Level
11:15	Reserved	-

Table	11-1	Interrupt Sources	list
Inon	11 1	incriapi Sources	unu

Note: OV-overvoltage, OC-overcurrent, OT-overtemperature, UV-Undervoltage, WKUP-Wakeup.

11.2 Block Diagram

Figure 11-1 given below shows the architecture of the interrupt controller:

Figure 11-1 Interrupt Controller Block Diagram

11.3 Register List

 Table 11-2 Interrupt source Block Base Address

Name	Base Address
INTS_REGISTER	0xC8

 Table 11-3 Interrupt source Block Configuration Registers List

Offset	Register Name	Description
0x00	INTS_PD	Interrupt Pending register
0x01	INTS_MSK	Interrupt Mask register

11.4 Register Description

11.4.1 INTS_PD

CPU can access the status of interrupt sources by read this register. Interrupt Pending bit can not be cleared by writing 1, it is not cleared until device pending is cleared.

offset = 0x00

Bit	Name	Description	Access	Reset
15:11	-	Reserved	-	-
10:0	INTS_PD	Interrupt Pending bit. Interrupt name "n" accords to Interrupt Sources Table.0: Interrupt source n request is not active1: Interrupt source n request is active.	R	INTS_PD[n]

11.4.2 INTS_MSK

CPU can enable or disable by write this register. 0: Interrupt is disabled. 1: Interrupt is enabled. offset = 0x01

Bits	Name	Description	Access	Reset
15:11	-	Reserved	-	-
10	POWERIN	POWER IN Interrupt Mask Bit	RW	0
9	REMCON	REMOTE CONTROL Interrupt Mask Bit	RW	0
8	IR	IR Interrupt Mask Bit	RW	0
7	WKUP	WKUP Interrupt Mask Bit	RW	0
6	ONOFF	ONOFF Interrupt Mask Bit	RW	0
5	ALARM	ALARM Interrupt Mask Bit	RW	0
4	UV	UN-VOLTAGE Interrupt Mask Bit	RW	0
3	ОТ	OVER TEMPERATURE Interrupt Mask Bit	RW	0
2	OC	OVER CURRENT Interrupt Mask Bit	RW	0

ATC2609 DATASHEET

1	OV	OVER VOLTAGE Interrupt Mask Bit	RW	0
0	AUDIO	AUDIO Interrupt Mask Bit	RW	0

General Purpose I/O 12

12.1 **Features**

This chapter will describe the multiplexing of the whole system and the GPIO function. There are 6 GPIOs in ATC2609 to provide more flexible application. The 6 GPIOs have independent inputs and outputs, and the multiplexing is software controlled and can be configured for different applications. The GPIOs support different driving capacities.

There are 3 SGPIOs in SVCC power domain. Related registers are PMU_SYS_CTL4 and PMU_SYS_CTL6 in Power Management Unit chapter.

Registers List 12.2

Table 12-1 GP10/MFP Registers block base Address		
Name	Base Address	
MFP_REGISTER	0xD0	

12 1 CDIO/MED D al L חז

	Tuble	12-2 GI IO/III I Registers Offset Thurses
Offset	Register Name	Description
0x00	MFP_CTL	Multiplexing Control
0x01	PAD_VSEL	PAD Voltage Selection
0x02	GPIO_OUTEN	GPIO Output Enable
0x03	GPIO_INEN	GPIO Input Enable
0x04	GPIO_DAT	GPIO Data
0x05	PAD_DRV	PAD Drive Capacity Select
0x06	PAD_EN	PAD enable control

Table 12.2 GPIO/MFP Registers Offset Address

12.3 **Register Description**

12.3.1 **MFP CTL**

Multiplexing Control Register

Bits	Name	Description	Access	Reset
15:9	-	Reserved	-	-

		I2S_MCLK1, I2S_LRCLK1, I2S_DOUT		
		Multiplexing		
		00: I2S_MCLK1, I2S_LRCLK1 and I2S_DOUT		
		01: GPIO3, GPIO4 and GPIO5		
8:7	I2S_MCLKI_LRC	10: SPCK, SPDA, and I2S DOUT (SPCK and	RW	0
	LKI_DOUT	SPDA 1MOhm pull-down are enabled		
		automatically)		
		11: PCM2 DATAIN, PCM2 DATAOUT,		
		PCM0_DATAOUT		
		I2S MCLK0 and I2S LRCLK0 Multiplexing		
		00: I2S_MCLK0 and I2S_LRCLK0		
6:5	I2S_MCLK0_LRC LK0	01: GPIO0 and GPIO1	RW	0
		10: Reserved		
		11: PCM_CLK, PCM_SYNC		
		I2S_DIN Multiplexing		
		00: I2S_DIN	RW	
4:3	I2S_DIN	01: GPIO2		0
		10: I2S_DOUT		
		11: PCM0_DATAIN		
		FMINL and FMINR multiplexing		
2	EMINI P	0: FMINL and FMINR	DW	0
2		1: PCM1_DATAOUT, PCM1_DATAIN	IX VV	0
		This pad is multiplexed by analog and digital circuit.		
		MICINLR multiplexing		
		00: MICINL and MICINR		
1.0	MICINI P	01: MICINLN and MICINLP (or MICINRN and	DW	0
1.0	WIICHNER	MICINRP)	IX VV	0
		10: DMICCLK and DMICDAT		
		11:Reserved		

Note1: When bit[1:0] is set to 10, MICINLN&MICINLP must be disabled, otherwise, DMIC PAD and MICINLN&MICINLP PAD will conflict with each other.

Note2: When bit[1:0] is set to 01, Choosing (MICINLN and MICINLP) or (MICINRN and MICINRP) is determined by MICEN & ADCEN.

12.3.2 PAD_VSEL

PAD Voltage Selection

Bits	Name	Description	Access	Reset
15:4	-	Reserved	-	-
		PAD Supply Voltage Select:		
3	I2S_MCLK0_LRCLK0	1:3.1V	RW	0
		0:1.8V		

		PAD Supply Voltage Select:		
2	I2S_MCLK1_LRCLK1	1:3.1V	RW	0
		0:1.8V		
		PAD Supply Voltage Select:		
1	I2S_DIN_DOUT	1:3.1V	RW	0
		0:1.8V		
		PAD Supply Voltage Select:		
0	FMINLR	1:3.1V	RW	0
		0:1.8V		

12.3.3 GPIO_OUTEN

GPIO Output Enable Register

Offset=0x02

Bits	Name	Description	Access	Reset
15:6	-	Reserved	-	-
		GPIO[5:0] Output Enable.		
5:0	GPIO_OUTEN	0: Disable	RW	0
		1: Enable		

12.3.4 GPIO_INEN

GPIO Input Enable Register

Offset=0x03

Bits	Name	Description	Access	Reset
15:6	-	Reserved	-	-
		GPIO[5:0] Input Enable.		
5:0	GPIO_INEN	0: Disable	RW	0
		1: Enable		

12.3.5 **GPIO_DAT**

GPIO Data Register

Bits	Name	Description	Access	Reset
15:6	-	Reserved	-	-
5:0	GPIO_DAT	GPIO[5:0] Input/Output Data.	RW	0

12.3.6 **PAD_DRV**

Pad Driving Capacity

Offset=0x05

Bits	Name	Description	Access	Reset
15	-	Reserved	-	-
		PAD DMICCLK Drive Capacity		
14	DMICCLK_DRV	0: Level 1	RW	0
		1: Level 2		
		PAD EXTIRQ Drive Capacity		
13	EXTIRQ_DRV	0: Level 1	RW	0
		1: Level 2		
		PAD TWSI_CLK&TWSI_DATA Drive		
12	TWSI CIK DATA DRV	Capacity	RW	0
12		0: Level 1	IC VV	U
		1: Level 2		
		PAD I2S_MCLK1 Drive Capacity		
		0:Level 1		
11:10	I2S_MCLK1_DRV	1:Level 3	RW	0
		2:Level 5		
		3:reserved		
		PAD I2S_LRCLK1 Drive Capacity		
		0:Level 1		
9:8	I2S_LRCLK1_DRV	1:Level 3	RW	0
		2:Level 5		
		3:reserved		
		PAD I2S_MCLK0 Drive Capacity		
		0:Level 1		
7:6	I2S_MCLK0_DRV	1:Level 3	RW	0
		2:Level 5		
		3:reserved		
		PAD I2S_LRCLK0 Drive Capacity		
		0:Level 1		
5:4	I2S_LRCLK0_DRV	1:Level 3	RW	0
		2:Level 5		
		3:reserved		
		PAD I2S_DOUT Drive Capacity		
		0:Level 1		
3:2	I2S_DOUT_DRV	1:Level 3	RW	0
		2:Level 5		
		3:reserved		
		PAD I2S_DIN Drive Capacity		
1:0	I2S_DIN_DRV	0:Level 1	RW	0
		1:Level 3		

	2:Level 5	
	3:reserved	

12.3.7 **PAD_EN**

PAD enable control

Bits	Name	Description	Access	Reset
15:7	-	Reserved	-	-
6	DAD ENG	1: P_I2S_MCLK0 pad enable	DW	0
0	PAD_EINO	0: P_I2S_MCLK0 pad disable	K vv	0
5	DAD ENS	1: P_I2S_LRCLK0 pad enable	DW	0
5	PAD_EN3	0: P_I2S_LRCLK0 pad disable	KW	U
4	PAD_EN4	1: P_I2S_DIN pad enable	RW	0
4		0: P_I2S_DIN pad disable		0
2	PAD_EN3	1: P_I2S_MCLK1 pad enable	RW	0
3		0: P_I2S_MCLK1 pad disable		
2	PAD_EN2	1: P_I2S_LRCLK1 pad enable	RW	0
2		0: P_I2S_LRCLK1 pad disable		
1	DAD ENI	1: P_I2S_DOUT pad enable	DW	0
1	PAD_EN1	0: P_I2S_DOUT pad disable	ĸw	0
	DAD ENO	1: P_EXTIRQ pad enable	DW	
0	PAD_ENU	0: P_EXTIRQ pad disable	KW	0

13 Pin Description

13.1 ATC2609 Pin Assignment

Note: This is a schematic figure for ATC2609, Pin 69 is e-pad under the IC Figure 13-1 ATC2609 schematic pin assignment

13.2 ATC2609 Pin Definition

Pin No.	PIN Name	Function Name	I/O	Description
1	LDO2AVCC	LDO2AVCC	Power	Output of LDO2, also for analog IO
2	LDO2LDO8IN	LDO2 LDO8IN	Power	Input of LDO2 and LDO8
3	LDO8OUT	LDO8OUT	Power	Output of LDO8
4	SVCC	SVCC	Power	Power for Standby mode
5	POR	POR	AO	Power on reset to Master
6	ONOFF	ONOFF	А	ONOFF key input/reset signal
7	LOSCO	LOSCO	AO	32.768kHz crystal oscillator output
8	LOSCI	LOSCI	AI	32.768kHz crystal oscillator input
9	RTCVDD	RTCVDD	Power	VDD for RTC power domain
10	CMN	CMN	А	Coulombmeter input
11	СМР	СМР	А	Coulombmeter input
12	SW_CHR_IN	SW_CHR_IN	AI	Input of switch charger
13	SW CHR LX	SW CHR LX	А	Output of switch charger
14	WALLFET_EN	WALLFET_EN	А	Enable signal of external MOSFET connected to WALL
15	BATFET_EN	BATFET_EN	А	Enable signal of external MOSFET connected to BAT
16	WALL	WALL	Power	Wall adapter power
17	VBUS	VBUS	Power	USB power
18	SYSPWR	SYSPWR	Power	System power
19	BAT	BAT	Power	Battery power
20	VDD	VDD	Power	VDD for logic
21	LDO7IN	LDO7IN	Power	LDO7 input
22	LDO7OUT	LDO7OUT	Power	LDO7 output
		AUXIN0		General ADC input0
		SGPIO1		SGPIO1
23	AUXIN0	WKUP	А	Wake up signal
		IR		Infrared signal
		32K_OUT		32kHz output
		AUXIN1		General ADC input1
		SGPIO2		SGPIO2
24	AUXIN1	WKUP	А	Wake up signal
		IR		Infrared signal
		32K_OUT		32kHz output
		REMCON		Remote control signal
25	DEMCON	SGPIO0		SGPIO0
25	REMCON	WKUP	A	Wake up signal
		IR		Infrared signal
26	DC4FB	DC4FB	А	DC-DC4 output
27	DC4IN	DC4IN	А	DC-DC4 input
28	DC4LX	DC4LX	А	DC-DC4 inductor connection
29	DC2LX	DC2LX	А	DC-DC2 inductor connection
30	DC2IN	DC2IN	А	DC-DC2 input
31	DC2FB	DC2FB	А	DC-DC2 output
32	DC3FB	DC3FB	А	DC-DC3 output
33	DC3IN	DC3IN	Α	DC-DC3 input

Table 13-1 ATC2609 Pin Descriptions

34	DC3LX	DC3LX	А	DC-DC3 inductor connection
35	LDO0OUT	LDO0OUT	А	LDO0 output
36	LDO0IN	LDO0IN	А	LDO0 input
37	DC1LX	DC1LX	А	DC-DC1 inductor connection
38	DC1LX	DC1LX	A	DC-DC1 inductor connection
39	DCIIN	DC1IN	A	DC-DC1 input
40	DC1IN	DC1IN	A	DC-DC1 input
41	DCIOUT	DCIOUT	Δ	DC-DC1 output
42	LDOIOUT	LDOIOUT	Δ	I DO1 output
43	LD01LD04IN	LD01UD04IN	Δ	LDO1 and LDO4 input
43	LDOILDO4IIV	LDOILDO4IIN	Δ	LDO1 and LDO4 input
45	I2S_LRCLK1		IO	12S L R clock1
		GPIO/		General purpose input/output /
		DCM2 DATAOUT		PCM2 data output
16	TWSLCLK	TWSL CLK	IO	TWSL clock
40	TWSI_CLK	TWSI_CLK	10	TWSI dote
4/	TWSI_SDATA	I W SI_SDATA	10	1 w Si data
40	DO MOLVI	125_MCLKI	ΙΟ	125 master clock
48	125_WCLKI	GPIUS		General purpose input/output 5
		PCM2_DATAIN		PCM2 data input
10		128_DOUT	10	128 data output
49	12S_DOUT	GPIO5	10	General purpose input/output 5
		PCM0_DATAOUT		PCM0 data output
		I2S_DIN	-	12S data input
50	12S DIN	I2S_DOUT	10	I2S data output
50	125_DIN	GPIO2	10	General purpose input/output 2
		PCM0_DATAIN		PCM0 data input
	I2S_LRCLK0	I2S_LRCLK0	ΙΟ	I2S LR clock0
51		GPIO1		General purpose input/output 1
		PCM_SYNC		PCM sync
	I2S_MCLK0	I2S_MCLK0	Ю	I2S master clock
52		GPIO0		General purpose input/output 0
		PCM_CLK		PCM clock
53	EXTIRQ	EXTIRQ	IO	IRQ output signal
54	LDO6OUT	LDO6OUT	А	LDO6 output signal
55	VCC	VCC	А	VCC
56	VMICEXT	VMICEXT	А	External MIC bias
	MICINLP	MICINI D	AI	Differential mono MIC Positive channel
57		MICINLP		input
		DMICDAT		DMIC data
	MICINLN	MICINLN DMICCLK	AI	Differential mono MIC Negative channel
58				input
				DMIC clock
59	VRO	VRO	А	VR output
60	VREF	VREF	А	Reference voltage
61	VROS	VROS	А	VRO sense
	FMINR	FMINR	AI	FM right channel input
62		PCM1 DATAIN		PCM1 data input
		FMINL		FM left channel input
63	FMINL	PCM1 DATAOUT	AI	PCM1 data output
64	OUTEL	OUTFL	AO	Front left channel output
65	OUTER	OUTER	AO	Front right channel output
66	DC0FR	DC0FR	Δ	DC-DC0 output
67	DCOIN	DCOIN	Δ	DC-DC0 input
68	DC0LY	DC0LY	Δ	DC-DC0 inductor connection
60		CND	A	Cround
09	C-PAD		rower	Giouna

 $\operatorname{Copyright}^{\scriptscriptstyle (\! 0\!)}$ 2015 Actions (Zhuhai) Technology Co., Ltd. All rights reserved.

14 Package and Ordering Information

14.1 Package Drawing

Figure 14-1 ATC2609 Package Drawing

Appendix

Acronyms and Terms

AMIC	Analog Microphone
ADC	Analog-to-Digital Converter
AGC	Automatic Gain Control
BT	Bluetooth
CC	Constant Current
CV	Constant Voltage
DC-DC/DC-DC	DC to DC Converter
DMIC	Digital Microphone
DAC	Digital-to-Analog Converter
GPIO	General Purpose Input/Output
HW	Hardware
IR	Infrared
I/O	Input/Output
128	Inter-IC Sound
LSB	Least Significant Bit
Li-Ion	Lithium Ion (battery type)
LDO	Low Dropout Regulator
MIC	Microphone
MSB	Most Significant Bit
OS	Operation System
OSC	Oscillator
РА	Power Amplifier
PMIC	Power Management Integrated Circuit
PMU	Power Management Unit
РСМ	Pulse Code Modulation
PDM	Pulse Distance Modulation
PFM	Pulse Frequency Modulation
PWM	Pulse Width Modulation
RTC	Real-Time Clock
SCY	Sampling Cycle
SD	Secure Digital memory card
SW	Software
SoC	System on Chip
THD	Total Harmonic Distortion
UART	Universal Asynchronous Receiver Transmitter

Actions (Zhuhai) Technology Co., Ltd. Address: No. 1, Ke Ji Si Road, Technology Innovation Coast of Hi-Tech Zone, Zhuhai, Guangdong, China Tel: +86-756-3392353 Fax: +86-756-3392251 Post Code: 519085 <u>http://www.actions-semi.com</u> Business Email: <u>mmp-sales@actions-semi.com</u> Technical Service Email: <u>mmp-cs@actions-semi.com</u>