

ATC2603C Datasheet

Version: 2.4

2016-11-01

Declaration

Disclaimer

Information given in this document is provided just as a reference or example for the purpose of using Actions' products, and cannot be treated as a part of any quotation or contract for sale.

Actions products may contain design defects or errors known as anomalies or errata which may cause the products' functions to deviate from published specifications. Designers must not rely on the instructions of Actions' products marked "Reserved" or "undefined". Actions reserves these for future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to them.

ACTIONS DISCLAIMS AND EXCLUDES ANY AND ALL WARRANTIES, INCLUDING WITHOUT LIMITATION ANY AND ALL EXPRESS OR IMPLIED WARRANTIES OF MERCHANTABILITY, ACCURACY, SECURITY, FITNESS FOR A PARTICULAR PURPOSE, TITLE, AND AGAINST INFRINGEMENT OF INTELLECTUAL PROPERTY AND THE LIKE TO THE INFORMATON OF THIS DOCUMENT AND ACTIONS PRODUCTS.

IN NO EVENT SHALL ACTIONS BE LIABLE FOR ANY DIRECT, INCIDENTAL, INDIRECT, SPECIAL, PUNITIVE, OR CONSEQUENTIAL DAMAGES WHATSOEVER, INCLUDING, WITHOUT LIMITATION FOR LOST OF DATA, PROFITS, SAVINGS OR REVENUES OF ANY KIND ARISING FROM USING THE INFORMATON OF THIS DOCUMENT AND ACTIONS PRODUCTS. REGARDLESS OF THE FORM OF ACTION, WHETHER BASED ON CONTRACT; TORT; NEGLIGENCE OF ACTIONS OR OTHERS; STRICT LIABILITY; OR OTHERWISE; WHETHER OR NOT ANY REMEDY OF BUYER IS HELD TO HAVE FAILED OF ITS ESSENTIAL PURPOSE, AND WHETHER ACTIONS HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES OR NOT.

Actions' products are not designed, intended, authorized or warranted for use in any life support or other application where product failure could cause or contribute to personal injury or severe property damage. Any and all such uses without prior written approval of an Officer of Actions and further testing and/or modification will be fully at the risk of the customer.

Ways of obtaining information

Copies of this document and/or other Actions product literature, as well as the Terms and Conditions of Sale Agreement, may be obtained by visiting Actions' website at: http://www.actions-semi.com or from an authorized Actions representative.

Trademarks

The word "Actions" and the logo are the trademarks of Actions Semiconductor Co., Ltd, and Actions (Zhuhai) Technology Co., Limited is authorized to use them. Word "炷花" is the trademark of Actions (Zhuhai) Technology Co., Limited. Names and brands of other companies and their products that may from time to time descriptively appear in this document are the trademarks of their respective holders, no affiliation, authorization, or endorsement by such persons are claimed or implied except as may be expressly stated therein.

Rights Reserved

The provision of this document shall not be deemed to grant buyers any right in and to patent, copyright, trademark, trade secret, know how, and any other intellectual property of Actions or others.

Miscellaneous

Information contained or described herein relates only to the Actions products and as of the release date of this publication, abrogates and supersedes all previously published data and specifications relating to such products provided by Actions or by any other person purporting to distribute such information.

Actions reserves the rights to make changes to information described herein at any time without notice. Please contact your Actions sales representatives to obtain the latest information before placing your product order.

Additional Support

Additional product and company information can be obtained by visiting the Actions website at: http://www.actions-semi.com

Contents

eclar	ation ·	ji	Ĺ
onte	nts ·····	······iv	7
evisi	on Hist	ory ·····-5	ľ
In	troduc	ion	
1.1	Overv	ew	L
1.2	Featur	25	ĺ
	T	1 Applications	,
1.4	Orderi	ag Information ······	}
Al	bsolute	Maximum Rating ····································	ļ
ъ			
El	ectrical	Characteristics	5
4.1	Oversl	100t	5
	Dower	noth	τ.
4.3			
4.4			
4.5	Typica	l Characteristics ······1	L
4.6	Efficie	ncy Parameter ·····	L
4.7	Load T	ransient Response	2
Αι	udio Co	dec Subsystem ·····14	ŀ
5.1	Audio	Diagram ·····12	1
5.1	_		
	_	-	
		_	
	evisi In 1.1 1.2 1.3 1.4 Al 4.1 4.2 4.3 4.4 4.5 4.6 4.7 Al 5.1 5.1	evision Historial Introduct 1.1 Overvi 1.2 Feature 1.3 Typical 1.4 Orderin Absolute Recomme Electrical 4.1 Oversh 4.2 Powerp 4.3 DCDC 4.4 LDO 4.5 Typical 4.6 Efficien 4.7 Load T Audio Co 5.1 Audio 5.1.1 Region	1.2 Features 1 1.3 Typical Applications 3 1.4 Ordering Information 2 Absolute Maximum Rating 4 Recommended Operating Conditions 4 Electrical Characteristics 5 4.1 Overshoot 5 4.2 Powerpath 5 4.3 DCDC 6 4.4 LDO 7 4.5 Typical Characteristics 11 4.6 Efficiency Parameter 11 4.7 Load Transient Response 12 Audio Codec Subsystem 14 5.1 Audio Diagram 14 5.1.2 Register Description 15 5.1.2.1 AUDIOINOUT_CTL 15 5.1.2.2 DAC_DIGITALCTL 16 5.1.2.3 DAC_VOLUMECTLO 16 5.1.2.4 DAC_ANALOG0 17 5.1.2.5 DAC_ANALOG1 18 5.1.2.6 DAC_ANALOG2 18 5.1.2.8 ADC_DIGITALCTL 20

	5.1.	2.10 ADC_CTL	22
	5.1.	2.11 AGC_CTL0	23
	5.1.	2.12 AGC_CTL2	24
	5.1.	2.13 ADC_ANALOG0	25
	5.1.	2.14 ADC_ANALOG1 ·····	26
	5.2 A	Audio Characteristics	27
	5.2.1	DAC+PA	
	5.2.2	PA	
	5.2.3	ADC ·····	30
6		Interface ·····	
	6.1 F	eatures ······	31
	62 D	Legister List ·····	21
	6.3 R	Legister Description · · · · · · · · · · · · · · · · · · ·	32
	6.3.1	SADDR	32
7	Dame	er Management Unit ····································	22
7	Powe	eatures))
	7.1 F	eatures	33
	7.2 N	Module Description	33
	7.2.1	DC-DC Module	33
	7.2.2	LDO Module ····	34
	7.2.3	Charger Module · · · · · · · · · · · · · · · · · · ·	35
	7.2.4	APDS Module	36
	7.2.5	Power Modes · · · · · · · · · · · · · · · · · · ·	37
	7.2.6	POR and Power ON/OFF Sequence Module	38
	7.2.7	ONOFF & Reset Module	39
	7.2.8	PWM Module ·····	39
	7.3 R	Legister List	39
		Register Description	
	7.4.1	PMU_SYS_CTL0	
	7.4.2	PMU_SYS_CTL1	
	7.4.3	PMU_SYS_CTL3	
	7.4.4	PMU_SYS_CTL4	
	7.4.5	PMU_SYS_CTL5	
	7.4.6	PMU_BAT_CTL0	
	7.4.7 7.4.8	PMU_BAT_CTL1	
	7.4.8 7.4.9	PMU_VBUS_CTL0	
	7.4.9	PMU_VBUS_CTL1	
	7.4.10	PMU_WALL_CTL0	
	7.4.11	PMU_WALL_CTL1	
	7.4.12	PMU_SYS_PENDING ······	
	1.7.13		55

7.4.14	PMU_DC1_CTL054
7.4.15	PMU_DC2_CTL056
7.4.16	PMU_DC3_CTL057
7.4.17	PMU_LDO1_CTL58
7.4.18	PMU_LDO2_CTL ······59
7.4.19	PMU_LDO3_CTL59
7.4.20	PMU_LDO5_CTL60
7.4.21	PMU_LDO6_CTL60
7.4.22	PMU_LDO7_CTL ······61
7.4.23	PMU_LDO11_CTL ······61
7.4.24	PMU_SWITCH_CTL ·····62
7.4.25	PMU_OV_CTL063
7.4.26	PMU_OV_CTL164
7.4.27	PMU_OV_STATUS ·················65
7.4.28	PMU_OV_EN66
7.4.29	PMU_OV_INT_EN
7.4.30	PMU_OC_CTL ····································
7.4.31	PMU_OC_STATUS
7.4.32	PMU_OC_EN
7.4.33	PMU_OC_INT_EN70
7.4.34	PMU_OC_INT_EN 70 PMU_UV_CTL0 71 PMU_UV_CTL1 72 PMU_UV_STATUS 73
7.4.35	PMU_UV_CTL1
7.4.36	1110_01111100
7.4.37	PMU_UV_EN74
7.4.38	PMU_UV_INT_EN75
7.4.39	PMU_OT_CTL
7.4.40	PMU_CHARGER_CTL0 ···········76
7.4.41	PMU_CHARGER_CTL1 ············78
7.4.42	PMU_CHARGER_CTL2 ·······79
7.4.43	PMU_APDS_CTL
7.4.44	PMU_ICMADC ·····82
7.4.45	PMU_ABNORMAL_STATUS ·····82
7.4.46	PMU_WALL_APDS_CTL ·····83
7.4.47	PMU_REMCON_CTL0 ·····84
7.4.48	PMU_REMCON_CTL1 ·····85
7.4.49	PMU_MUX_CTL0
7.4.50	PMU_SGPIO_CTL0 ·····87
7.4.51	PMU_SGPIO_CTL1 ·····88
7.4.52	PMU_SGPIO_CTL2 ·····88
7.4.53	PMU_SGPIO_CTL3 ·····89
7.4.54	PMU_SGPIO_CTL4 ·····90
7.4.55	PWMCLK_CTL ·····90
7.4.56	PWM0_CTL91
7.4.57	PWM1_CTL91

8	Aux	kiliary ADC ······	92
	8.1	Module Description · · · · · · · · · · · · · · · · · · ·	92
	8.2	Register List ·····	93
	8.3	Register Description ·····	94
	8.3.1	•	
	8.3.2		
	8.3.3		
	8.3.4	_	
	8.3.5	_	
	8.3.6		
	8.3.7		
	8.3.8		
	8.3.9		
	8.3.1	0 PMU_REMCONADC ·····	98
	8.3.1		98
	8.3.1		98
	8.3.1		98
	8.3.1		99
	8.3.1		
	8.3.1	6 PMU_AUXADC0 ·····	99
	8.3.1		
	8.3.1	8 PMU_AUXADC2 ·····	99
	8.3.1	9 PMU_ADC_DBG0	100
	8.3.2	PMU_ADC_DBG1 ·····	100
	8.3.2	PMU_ADC_DBG2 ·····	100
	8.3.2	PMU_ADC_DBG3 ·····	100
	8.3.2	PMU_ADC_DBG4 ····	100
9	Rea	ll-Time Clock ······	101
	9.1	Module Description · · · · · · · · · · · · · · · · · · ·	101
	9.1.1	32kHz Oscillator · · · · · · · · · · · · · · · · · · ·	101
	9.1.2	2 Calendar ·····	102
	9.1.3	3 Alarm ·····	102
	9.2	Register List ·····	.102
	9.3	Register Description ·····	
	9.3.1	•	
	9.3.2		
	9.3.3		
	9.3.4		
	9.3.5		
	9.3.6	_	
	9.3.7	_	
		_	

Ģ	9.3.8	RTC_YMD	105
10	Infra	ared Remote Controller ······	··· 107
10.		Features ·····	
10.	2 N	Modules Description ·····	107
	10.2.1	-	
	10.2.2		
1	10.2.3		
1	10.2.4	4 RC6 Protocol ·····	110
10.		Register List ·····	111
10.	4 F	Register Description ·····	112
1	10.4.1		112
1	10.4.2	2 IRC_STAT ·····	112
1	10.4.3	3 IRC_CC	113
1	10.4.4	4 IRC_KDC	113
1	10.4.5	5 IRC_WK	114
1	10.4.6	5 IRC_RCC	114
	10.4.7	_	
11 1	Inter	rrupt Controller ······	115
11	1 E	Fontures	115
11.	1 [Block Diagram ·····	113
11.			
11.	3 F	Register List	116
11.	4 F	Register Description ·····	116
1	11.4.1		
1	11.4.2		
10	a		115
12 (eral Purpose I/O ······	
12.	1 F	Features ·····	117
12.	2 F	Registers List	117
12.	3 F	Register Description	118
1	12.3.1	1 MFP_CTL ·····	118
1	12.3.2	2 GPIO_OUTEN ·····	119
1	12.3.3	GPIO_INEN ·····	119
1	12.3.4	4 GPIO_DAT ·····	119
1	12.3.5		
1	12.3.6	5 PAD_EN	121
13 l	Pin I	Description ·····	122
13.	1 A	ATC2603C Pin Assignment ·····	122

122	ATC2603C Pin Definition ·	13.2
126	ackage and Ordering Inf	14 Pac
126	Package Drawing	14.1
127	ndix	Append

Revision History

Date	Revision	Description
2014-08-30	1.0	First Release
2015-03-10	1.1	Correct some mistakes and add descriptions on ICMADC.
2015-06-03	1.2	Correct mistakes on LDO11 & LDO12 functions descriptions.
2015-06-25	2.0	Add electrical parameters tables and figures in Chap4
2015 07 20	2.1	1. Correct mistakes of pin68;
2015-07-30		2. Update parameters and registers.
2015-09-23	2.2	Correct conflicts in LDO parameters
2016-05-04	2.3	Modify content in audio codec chapter
2016-11-01	2.4	Correct mistakes Voltage of LDO11 and LDO12 in feature list

1 Introduction

1.1 Overview

ATC2603C is an integrated power management and audio subsystem which provides a cost effective, single-chip solution for portable multimedia systems. All the information from Master is configured through TWI (Two Wire Interface) interface of ATC2603C.

The integrated audio Codec provides all the necessary functions for high-quality recording and play-back. Programmable on-chip amplifiers allow direct connection of headphones and microphones with a minimum of external components.

ATC2603C includes three programmable DC-DC converters, eight low-dropout (LDO) regulators and one current limit switch to generate suitable supply voltage for the system, including on-chip audio CODEC as well as off-chip components such as a digital core and memory chips. Each of these is voltage programmable. ATC2603C can be powered by a lithium battery, wall adaptor or USB.

An on-chip battery charger supports both trickle charging and fast (Constant Current, Constant Voltage) charging of single-cell Lithium battery. The charging current, termination voltage, and time-out are programmable to fit different types of batteries.

Internal power management circuit controls the start-up and shutdown sequence of supply voltages, as well as sleep and wake-up. It also detects and handles abnormal conditions such as overvoltage, overcurrent, etc.

A 32.768 kHz crystal oscillator should be supplied to ATC2603C system to get an accuracy clock for real time clock (RTC) and get alarm function for waking up the system. The master clock can be input directly from Master. IR and multi-channel ADC capable of waking up the system are also integrated.

1.2 Features

Audio CODEC

- 2.0 channel DAC, SNR (A-WEIGHTING) > 98dB, THD < -80dB
- 2.0 channel ADC, SNR(A-WEIGHTING) > 91dB, THD < -82dB
- Stereo 20mW PA (Power Amplifier) for headphone with 41 level volume control(volume update with zero-cross detection), traditional mode and direct drive mode, both with anti-pop circuit
- DAC supports sample rate of 192k/176.4k/96k/48k/32k/24k/16k/12k/8k/88.2k/44.1k/ 22.05k/11.025k
- ADC supports sample rate of 96k/48k/32k/24k/16k/12k/8k/44.1k/22.5k/11.025k
- Configurable high-pass filter with ADC
- Slave mode I2S, TDM mode only, Tx and Rx both
- 2.0 channel I2S Receiver and 2.0 channel transmitter

• I2S supports sample rate of 192k/176.4k/96k/48k/32k/24k/16k/12k/8k/88.2k/44.1k/22.05k/11.025k

Power Supply Generation

3 DC-DCs

- DC-DC Buck Converter (0.7~1.4V, Up to 1200mA)
- DC-DC Buck Converter (1.3~2.2V, Up to 1000mA)
- DC-DC Buck Converter (2.6~3.3V, Up to 1000mA, LDO mode, up to 800mA)

8LDOs and 1 SWITCH:

- LDO voltage regulators (2.6~3.3V, Up to 200mA), high PSRR(LDO1)
- LDO voltage regulators (2.6~3.3V, Up to 200mA), high PSRR(LDO2)
- LDO voltage regulator (1.5~2.0V, Up to 250mA) (LDO3)
- LDO voltage regulators (2.6~3.3V, Up to 150mA), high PSRR(LDO5)
- LDO voltage regulator (0.7~1.4V, Up to 200mA), high PSRR(LDO6)
- LDO voltage regulator (1.5~2.0V, Up to 200mA), high PSRR(LDO7)
- LDO voltage regulator(2.6~3.3V, Up to 25mA), for SVCC use(LDO11)
- LDO voltage regulator(1.5~2.0V, Up to 5mA), for RTCVDD use(LDO12)
- One SWITCH, configurable to LDO mode
- Overvoltage, Overcurrent, Overtemperature protection of DC-DCs and LDOs

Battery Charger

- Single-cell Lithium battery charger
- Thermal protection for charging control;

Power saving mode

- Several power saving modes including standby mode, sleep mode and deep-sleep mode
- "Always on" RTC with wake-up alarm
- In deep-sleep with RTC always on, the current of IBAT can be less than 30µA

System Control

- TWI slave Interface
- Handles power sequencing, power-on reset signal, sleep mode signal and interrupt signals
- Adaptive Power Distribute System, autonomous power source selection (Battery, Wall adaptor or USB bus)

Additional Features

- A multi-channel 10-bit ADC, can be used as voltage, current measurement or wake-up sources for Remote control
- An EXTIRQ to Master
- Configurable GPIO pins
- 24MHz system clock input supported
- ESD Level of HBM pass over 2000V of all IOs
- QFN68 package, 8mm*8mm, 0.4mm pin pitch

1.3 Typical Applications

ATC2603C mainly consists of Power Management Unit and Audio CODEC block targeted at multimedia platform application. Figure 1-1 below shows the typical application diagram of ATC2603C.

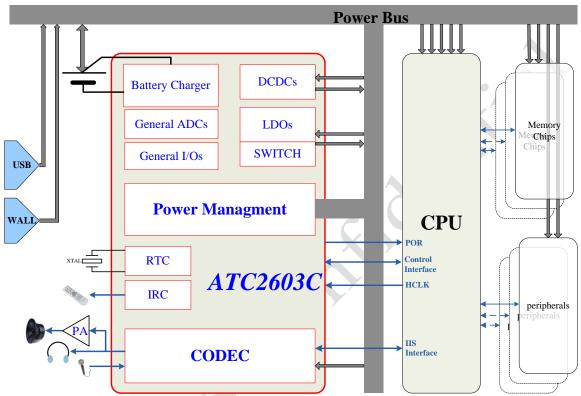


Figure 1-1 Typical Application diagram

1.4 Ordering Information

Table 1-1 Ordering Information

Part Numbers	Package	Size
ATC2603C	QFN68	8mm*8mm

2 Absolute Maximum Rating

These absolute maximum ratings are stress ratings, operating at or beyond these ratings for more than 1ms may result in permanent damage. Unless otherwise noted, all voltage values are relative to VSS.

Table 2-1 Max ratings of ATC2603C

Parameter	Symbol	Min	Max	Unit
Ambient Temperature	Tamb	TBD	TBD	\mathcal{C}
Storage Temperature	Tstg	-55	+150	\mathcal{C}
Supply Voltage	DCxIN/WALL/VBUS/BAT/SYSPWR	-0.5	+6.5	V
Immut Valtage	Digital IO	-0.3	3.6	V
Input Voltage	Analog IO (FMIN/MICIN)	-0.3	3.6	V
ESD Stress Voltage	VESD (Human Body Model)	2000	-	V

3 Recommended Operating Conditions

Table 3-1 Recommended Operating Voltage

Parameter	Symbol	Min	Тур	Max	Unit
Wall adapter input source	WALL	4.3	-	5.5	V
USB VBUS input source	VBUS	4.75	-	5.25	V
Battery input source	BAT	3.0	-	4.2	V
Supply voltage	DCxVIN/LDOxIN/SWxIN	3.0	-	5.5	V
Core supply	VDD	-	1.8	-	V
IO supply	VCC	-	3.1	-	V
Ground	GND/AGND/DCxGND/CDPGNDx	-	0	-	V

Note: in DCxVIN/LDOxIN/SWxIN and DCxGND/CDPGNDx, x is number, for example, DC1VIN represents the Input Voltage of DC-DC1.

4 Electrical Characteristics

4.1 Overshoot

The maximum DC voltage on power supply pins is 6.5V. However, during voltage domains switching period, the device can tolerate overshoot for up to 10µs, as shown in Figure 4-1 below.

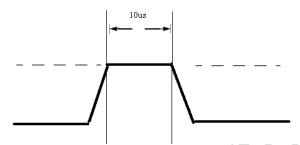


Figure 4-1 Tolerance for overshoot for up to 10µs

Table 4-1 Extreme Values for Input Pins

Parameter	Symbol	Start	Max	Unit
Supply voltage	DCxIN/WALL/VBUS/BAT	-0.3	12	V

ATC2603C can tolerate 1,000 times of such pulses. But exposed to overshoot circumstances for too many times may affect device's lifetime.

4.2 Powerpath

Table 4-2 Powerpath Parameters

Symbol	Characteristic & Condition	Min	Тур	Max	Units
V_{BUS}	Bus input voltage Range	4.5	5	5.5	V
V_{WALL}	Wall input voltage Range	4.5	5	5.5	V
V_{BAT}	Bat input voltage Range	3.3	4.2	4.4	V
V _{out(BUS)}	System Power Output Voltage		V _{BUS} -0.1	5	V
V _{out(WALL)}	System Power Output Voltage		V _{WALL} -0.1	5	V
V _{out(BAT)}	System Power Output Voltage		V _{BAT} -0.1	4.3	V
R _{BUS(on)}	Internal Ideal Resistance		450		mΩ
R _{WALL(on)}	Internal Ideal Resistance		300		mΩ
R _{BAT(on)}	Internal Ideal Resistance		300		mΩ
V _{WK(BUS)}	Wake Up Voltage	4.05	4.2	4.5	V
V _{WK(WALL)}	Wake Up Voltage	4.05	4.2	4.5	V
V _{UV(BAT)}	Under Voltage Int Threshold	3.1	3.3	3.5	V
V _{OV(BAT)}	Over Voltage Int Threshold	4.3	4.4	4.8	V
I _{OC(BAT)}	Over Current Protection Threshold	600	1000	1200	mA

V _{UV(BUS)}	Under Voltage Int Threshold	3.8	4.3	4.5	V
$V_{OV(BUS)}$	Over Voltage Int Threshold	5.5	6.3	6.8	V
$I_{OC(BUS)}$	Over Current Protection Threshold	600	1000	1200	mA
$V_{UV(WALL)}$	Under Voltage Int Threshold	3.8	4.5	4.5	V
V _{OV(WALL)}	Over Voltage Int Threshold	5.5	6.3	6.8	V
I _{OC(WALL)}	Over Current Protection Threshold	600	1000	1200	mA
I _{LIMIT(BUS)}	Bus Input Current Limited	300	500	1000	mA
$I_{LIMIT(WALL)}$	Wall Input Current Limited	300	500	2000	mA
V _{LIMIT(BUS)}	Bus Input Voltage Limited	4.2	4.3	4.5	V
V _{LIMIT(WALL)}	Wall Input Voltage Limited	4.2	4.3	4.5	V

4.3 DCDC

Table 4-3 DCDC1 Parameters

Symbol	Characteristic & Condition	Min	Тур	Max	Units
Vi	Input Voltage	3.2) <u>-</u>	5	V
Vo	Output Voltage	0.7	1.0	1.4	V
Io	Output Current Drivability △Vo/Vo=-5%		1200		mA
Fsw	Switching Frequency	0.85	1.6	2.7	MHz
Viringalo	Output Ripple Voltage Vo=1.0V,Io=1000mA		10		m V
Vripple	Output Ripple Voltage Vo=1.0V,Io=20mA		60		mV
Eff	Efficiency Vi=3.8V Vo=1.0V,Io=400mA		85		%
Tpu	Power Up Time	15	20	30	us
Tpd	Power Down Time Io=10mA		5		ms
LNR	Line Regulation Vi=3.3V-5.0V,Io=1000mA		0.05		%/V
LDR	Load Regulation Vi=5V,Io=10mA-1000mA		0.05		%/A
LDTR	Load Transient Response Vi=5.0V,Io=10mA-1000mA,1us		30		mV
Iocp	Over Current Limit For Output		1800		mA
Vuvp	Under Voltage Int For Output		0.9*Vo		V
Vovp	Over Voltage Int For Output		1.1* Vo		V
R(P)	Power Mosfet Switches High-side		250		mΩ
L	External Inductance DCR<50mΩ		2.2		uН
С	External Capacitance ESR<50mΩ		10		uF

Table 4-4 DCDC2 Parameters

Symbol	Characteristic & Condition	Min	Тур	Max	Units
Vi	Input Voltage	3.2	4.1	5	V
Vo	Output Voltage	1.0	1.4	1.85	V
Io	Output Current Drivability ΔVo/Vo=-5%		1000		mA
Fsw	Switching Frequency	0.85	1.6	2.7	MHz

Copyright[©] 2014-2018 Actions (Zhuhai) Technology Co., Ltd. All rights reserved.

		1		1	
Vripple	Output Ripple Voltage Vo=1.4V,Io=1000mA		10		mV
viippie	Output Ripple Voltage Vo=1.4V,Io=20mA		70		111 V
Eff	Efficiency Vi=3.8V Vo=1.4V,Io=300mA		89		%
Tpu	Power Up Time	20	30	60	us
Tpd	Power Down Time Io=10mA		5		ms
LNR	Line Regulation Vi=3.3V-5.0V,Io=1000mA		0.05		%/V
LDR	Load Regulation Vi=5.0V,Io=10mA-1000mA		0.05		%/A
LDTD	Load Transient Response		40		mV
LDTR	Vi=5.0V,Io=10mA-1000mA,1us		40		III V
Iocp	Over Current Limit For Output		1700		mA
Vuvp	Under Voltage Int For Output		0.9*Vo		V
Vovp	Over Voltage Int For Output		1.1*Vo	7.(V
Rds(on)	Power Mosfet Switches High-side		240		mΩ
L	External Inductance DCR<50mΩ		4.7		uН
С	External Capacitance ESR<50mΩ		10	7	uF

Table 4-5 DCDC3 Parameters

Symbol	Characteristic & Condition	Min	Тур	Max	Units
Vi	Input Voltage	3.2	4.1	5	V
Vo	Output Voltage	2.6	3.1	3.3	V
Io	Output Current Drivability Δ Vo/Vo=-5%		1000		mA
Fsw	Switching Frequency	0.85	1.6	2.7	MHz
Virginal	Output Ripple Voltage Vo=3.1V,Io=1000mA		10		mV
Vripple	Output Ripple Voltage Vo=3.1V,Io=20mA		100		III V
Eff	Efficiency Vi=3.8V Vo=3.1V,Io=300mA		92		%
Tpu	Power Up Time	30	50	120	us
Tpd	Power Down Time Io=10mA		5		ms
LNR	Line Regulation Vi=3.3V-5.0V,Io=1000mA		0.05		%/V
LDR	Load Regulation Vi=5.0V,Io=10mA-1000mA		0.05		%/A
LDTR	Load Transient Response Vi=5.0V,Io=10mA-1000mA,1us		120		mV
Iocp	Over Current Limit For Output		1950		mA
Vuvp	Under Voltage Int For Output		0.9*Vo		V
Vovp	Over Voltage Int For Output		1.1*Vo		V
Rds(on)	Power Mosfet Switches High-side		270		mΩ
L	External Inductance DCR<50mΩ		2.2		uН
С	External Capacitance ESR<50mΩ		10		uF

4.4 LDO

Table 4-6 LDO1 Parameters

Symbol	Characteristic & Condition	Min	Тур	Max	Units
Vi	Input Voltage	3.2		5	V
Vo	Output Voltage	2.6	3.1	3.3	V
Io	Output Current Drivability ΔVo/Vo=-5%		200		mA
PSRR	Power Supply Restrain Ratio Vi =3.6V, Io=200mA 10kHz		-38		db
Tpu	Power Up Time	600	800	1000	us
Tpd	Power Down Time Io=10mA		2		ms
LNR	Line Regulation Vi=3.3V-5.0V,Io=400mA		0.05		%/V
LDR	Load Regulation Vi=5.0V,Io=10mA-400mA		0.05		%/A
I DTD	Load Transient Response		75		mV
LDTR	Vi=5.0V,Io=10mA-400mA,1us		73		mV
Iocp	Over Current Protect For Output		900		mA
Vuvp	Under Voltage Protect For Output		2.65		V
Vovp	Over Voltage Protect For Output Vo=3.1V		3.3		V
V _{drop(min)}	Min Dropout voltage Io=400mA		200		mV
С	External Capacitance ESR<100mΩ		2.2		uF

Table 4-7 LDO2 Parameters

Symbol	Characteristic & Condition	Min	Тур	Max	Units
Vi	Input Voltage	3.2		5	V
Vo	Output Voltage	2.6	3.1	3.3	V
Io	Output Current Drivability ΔVo/Vo=-5%		200		mA
PSRR	Power Supply Restrain Ratio Vi =3.6V, Io=200mA 10kHz		-42		db
Tpu	Power Up Time	600	800	1000	us
Tpd	Power Down Time Io=10mA		2		ms
LNR	Line Regulation Vi=3.3V-5.0V,Io=200mA		0.05		%/V
LDR	Load Regulation Vi=5.0V,Io=10mA-200mA		0.05		%/A
LDTR	Load Transient Response Vi=5.0V,Io=10mA-200mA,1us		50		mV
Iocp	Over Current Protect For Output		480		mA
Vuvp	Under Voltage Protect For Output		2.65		V
Vovp	Over Voltage Protect For Output Vo=3.1V		3.35		V
V _{drop(min)}	Min Dropout voltage Io=200mA		350		mV
C	External Capacitance ESR<100mΩ		2.2		uF

Table 4-8 LDO3 Parameters

Symbol	Characteristic & Condition	Min	Тур	Max	Units
Vi	Input Voltage	3.2		5	V
Vo	Output Voltage	1.5	1.8	2.0	V
Io	Output Current Drivability \(\Delta \text{Vo/Vo=-5} \)%		200		mA
PSRR	Power Supply Restrain Ratio Vi =3.6V, Io=200mA 10kHz		-42		db
Tpu	Power Up Time	600	800	1000	us

Tpd	Power Down Time Io=10mA	1	ms
LNR	Line Regulation Vi=3.3V-5.0V,Io=200mA	0.05	%/V
LDR	Load Regulation Vi=5.0V,Io=10mA-200mA	0.05	%/A
LDTR	Load Transient Response	65	mV
LDTK	Vi=5.0V,Io=10mA-200mA,1us	03	111 4
Iocp	Over Current Protect For Output	725	mA
Vuvp	Under Voltage Protect For Output	1.65	V
Vovp	Over Voltage Protect For Output Vo=1.8V	1.95	V
$V_{drop(min)}$	Min Dropout voltage Io=200mA	350	mV
C	External Capacitance ESR<100mΩ	1.0	uF

Table 4-9 LDO5 Parameters

Symbol	Characteristic & Condition	Min	Тур	Max	Units
Vi	Input Voltage	3.2		5	V
Vo	Output Voltage	2.6	2.8	3.3	V
Io	Output Current Drivability \(\Delta \text{Vo/Vo=-5} \)		150		mA
PSRR	Power Supply Restrain Ratio Vi =3.6V, Io=200mA 10kHz		-48		db
Tpu	Power Up Time	600	750	1000	us
Tpd	Power Down Time Io=10mA		1		ms
LNR	Line Regulation Vi=3.3V-5.0V,Io=150mA		0.05		%/V
LDR	Load Regulation Vi=5.0V,Io=10mA-150mA		0.05		%/A
LDTR	Load Transient Response Vi=5.0V,Io=10mA-150mA,1us		30		mV
Iocp	Over Current Protect For Output		380		mA
Vuvp	Under Voltage Protect For Output		2.5		V
Vovp	Over Voltage Protect For Output Vo=2.8V		3.0		V
V _{drop(min)}	Min Dropout voltage Io=100mA		350		mV
С	External Capacitance ESR<100mΩ		1.0		uF

Table 4-10 LDO6 Parameters

Symbol	Characteristic & Condition	Min	Тур	Max	Units
Vi	Input Voltage	3.2		5	V
Vo	Output Voltage	0.7	1.2	1.4	V
Io	Output Current Drivability \(\Delta Vo/Vo=-5\)%		200		mA
PSRR	Power Supply Restrain Ratio Vi =3.6V, Io=200mA 10kHz		-44		db
Tpu	Power Up Time	400	550	700	us
Tpd	Power Down Time Io=10mA		1		ms
LNR	Line Regulation Vi=3.3V-5.0V,Io=200mA		0.05		%/V
LDR	Load Regulation Vi=5.0V,Io=10mA-200mA		0.05		%/A
LDTR	Load Transient Response Vi=5.0V,Io=10mA-200mA,1us		35		mV
Iocp	Over Current Protect For Output		510		mA

Vuvp	Under Voltage Protect For Output	1.0	V
Vovp	Over Voltage Protect For Output Vo=1.2V	1.3	V
$V_{drop(min)}$	Min Dropout voltage Io=200mA	350	mV
С	External Capacitance ESR<100mΩ	1.0	uF

Table 4-11 LDO7 Parameters

Symbol	Characteristic & Condition	Min	Тур	Max	Units
Vi	Input Voltage	3.2		5	V
Vo	Output Voltage	1.5	1.8	2	V
Io	Output Current Drivability ΔVo/Vo=-5%		200		mA
PSRR	Power Supply Restrain Ratio Vi =3.6V, Io=200mA 10kHz		-44		db
Tpu	Power Up Time	400	500	600	us
Tpd	Power Down Time Io=10mA		1		ms
LNR	Line Regulation Vi=3.3V-5.0V,Io=200mA		0.05		%/V
LDR	Load Regulation Vi=5.0V,Io=10mA-200mA	Load Regulation Vi=5.0V,Io=10mA-200mA			%/A
LDTR	Load Transient Response Vi=5.0V,Io=10mA-200mA,1us		35		mV
Iocp	Over Current Protect For Output		510		mA
Vuvp	Under Voltage Protect For Output		1.5		V
Vovp	Over Voltage Protect For Output Vo=1.8V		1.9		V
$V_{drop(min)}$	Min Dropout voltage Io=200mA		350		mV
С	External Capacitance ESR<100mΩ		1.0		uF

Table 4-12 LDO11 Parameters

Symbol	Characteristic & Condition	Min	Тур	Max	Units
Vi	Input Voltage	3.2		5	V
Vo	Output Voltage	2.6	3.1	3.3	V
Io	Output Current Drivability \(\Delta Vo/Vo=-5\% \)		30		mA
Tpu	Power Up Time		5		ms
Tpd	Power Down Time Io=10mA		1		ms
LNR	Line Regulation Vi=3.3V-5.0V,Io=30mA		0.05		%/V
LDR	Load Regulation Vi=5.0V,Io=1mA-30mA		0.05		%/A
LDTR	Load Transient Response Vi=5.0V, Io=1mA-30mA, 1us		80		mV
V _{drop(min)}	Min Dropout voltage Io=20mA		350		mV
С	External Capacitance ESR<100mΩ		1.0		uF

Table 4-13 LDO12 Parameters

Symbol	Characteristic & Condition		Тур	Max	Units
Vi	Input Voltage	3.2		5	V
Vo	Output Voltage		1.8		V
Io	Output Current Drivability \(\Delta \text{Vo/Vo=-5} \)%		15		mA

Version 2.3 Page 10

Tpu	Power Up Time	100	180	250	us
Tpd	Power Down Time Io=5mA		1		ms
LNR	Line Regulation Vi=3.3V-5.0V,Io=15mA		0.05		%/V
LDR	Load Regulation Vi=5.0V,Io=1mA-15mA		0.05		%/A
I DTD	Load Transient Response		30		mV
LDTR	Vi=5.0V,Io=1mA-15mA,1us		30		III V
$V_{drop(min)}$	Min Dropout voltage Io=15mA		350		mV
С	External Capacitance ESR<100mΩ		1.0		uF

4.5 Typical Characteristics

4.6 Efficiency Parameter

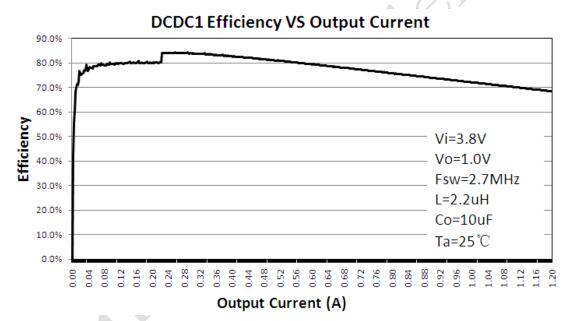
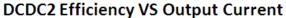



Figure 4-2 DCDC1 Efficiency

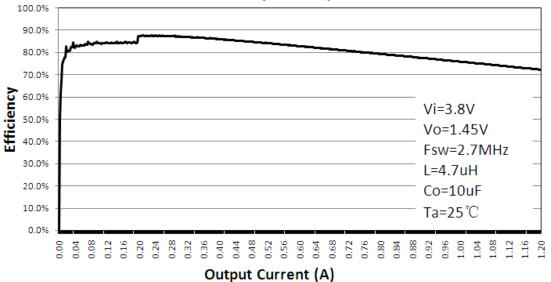
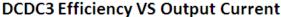



Figure 4-3 DCDC2 Efficiency

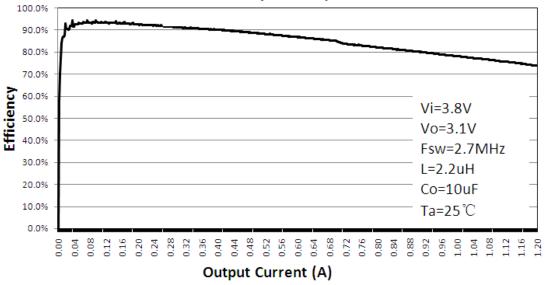


Figure 4-4 DCDC3 Efficiency

4.7 Load Transient Response

 $\label{eq:Vi=3.8V} Vi=3.8V, Fsw=2.7MHz \ , \ 0-80\% load \ \ , \ \ Tr/Toff=1us \ , Co=10uF \ , \ Unless \ other \ Notes \ \ .$

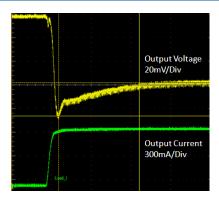


Figure 4-5 DCDC1 Load Transient Response

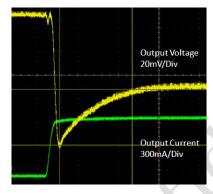


Figure 4-6 DCDC2 Load Transient Response

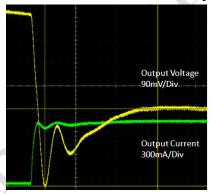


Figure 4-7 DCDC3 Load Transient Response

5 Audio Codec Subsystem

5.1 Audio Diagram

Audio Codec subsystem integrates I2S interface, DAC and ADC interface, MIC amplifier, FM amplifier and headphone PA. I2S interface in slave mode supports 2.0 channel transmitter and receiver. I2S supports sample rate of 192k/96k/48k/32k/24k/16k/12k/8k/88.2k/44.1k/22.05k/11.025k. The 2.0 channel Sigma-Delta DAC supports the same sample rate as I2S. The stereo 20mW PA (Power Amplifier) is integrated for headphone with 41-level volume and mute control, Non-direct and Direct Drive mode both with anti-pop circuit are supported for headphone. The subsystem supports stereo analog microphones (AMIC). The AMIC interface provides programmable bias output. There are Zero Crossing and Noise gating for analog microphone.

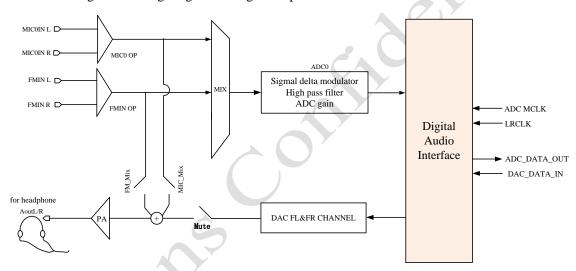


Figure 5-1 Audio Diagram & Signal Path

5.1.1 Register List

Table 5-1 AUDIO OUT IN Controller Registers Address

Name	Physical Base Address
AUDIO_OUT	0xA0
AUDIO_IN	0xA0

Table 5-2 Audio Registers

Offset	Register Name	Description
0x0	AUDIOINOUT_CTL	AUDIO IN/OUT Control for I2S Register
0x2	DAC_DIGITALCTL	DAC Control EN&MUTE Register
0x3	DAC_VOLUMECTL0	DAC FL&FR VOLUME Control Register
0x4	DAC_ANALOG0	DAC Analog 0 Register

0x5	DAC_ANALOG1	DAC Analog 1 Register
0x6	DAC_ANALOG2	DAC Analog 2 Register
0x7	DAC_ANALOG3	DAC Analog 3 Register
0x8	ADC_DIGITALCTL	ADC0 Digital Control Register
0x9	ADC_HPFCTL	ADC0 High Pass Filter Control Register
0xA	ADC_CTL	ADC0 control register
0xB	AGC_CTL0	AGC0 Control 0 Register
0xD	AGC_CTL2	AGC0 Control 2 Register
0xE	ADC_ANALOG0	ADC Analog 0 Register
0xF	ADC_ANALOG1	ADC Analog 1 Register

5.1.2 Register Description

5.1.2.1 AUDIOINOUT_CTL

AUDIO IN/OUT Control for I2S Register

Offset = 0x00

Bit(s)	Name	Description	Access	Reset
15:12	-	Reserved	-	-
		MCLK Divided to DAC		
11	MDD	0:DIV=1	RW	0
		1:DIV=2		
		headset or earphone INOUT detect IRQ enable		
10	HIOID	0: disable	RW	0
		1: enable		
		Direct Drive Output Over Current status IRQ		
		1: enable		
		0: disable		
9	OCIEN	If DAC_ANALOG2[5] is enabled and	RW	0
		DAC_ANALOG3[14] is high, when this bit is		
		enabled, an interrupt will be sent to the interrupt		
		controller.		
		I2S Output Enable.		
8	OEN	0: Disable	RW	0
		1: Enable		
7	-	Reserved	-	-
		I2S RX&TX Mode Select		
		00:3 wires mode		
6:5	IMS	01:4 wires mode	RW	00
		10:6 wires mode		
		11:Reserved		
4:0	-	Reserved	-	-

5.1.2.2 DAC_DIGITALCTL

DAC Control EN_MUTE Register

Offset = 0x02

Bit(s)	Name	Description	Access	Reset
15:12	-	Reserved	RW	0
		DAC input source select		
		00:I2S0(music)		
11:10	DACINSEL	01: Reserved	RW	00
		10: Reserved		
		11: Reserved		
		DACFL&FR EN_DITH	. (7
9	DEDFL_FR	1:Enable	RW	0
		0:Disable		
		DAC INPUT SAMPLE RATE SEL		
8	DISRS	0:MCLK/256	RW	0
		1:MCLK/128		
		DACFL&FR BANDWIDTH		
		00:Wide		
7:6	DBWFL_FR	01:Middle	RW	00
		10:Narrow		
		11:Reserved		
		DAC FL&FR OUTPUT SAMPLE RATE SEL		
		00:MCLK/16		
5:4	DOSRSFL_FR	01:MCLK/8	RW	00
		10:MCLK/4		
		11:MCLK/2		
		DACFR DIGITAL MUTE		
3	DMFR	1:Mute	RW	0
	•	0:Unmute		
	K	DACFL DIGITAL MUTE		
2	DMFL	1:Mute	RW	0
		0:Unmute		
		DACFR DIGITAL ENABLE		
1	DEFR	1:Enable	RW	0
~		0:Disable		
		DACFL DIGITAL ENABLE		
0	DEFL	1:Enable	RW	0
		0:Disable		

5.1.2.3 DAC_VOLUMECTL0

DAC FL_FR VOLUME CONTROL ((3/8) dB/level)

Offset = 0x03

Bit(s)	Name	Description	Access	Reset
--------	------	-------------	--------	-------

15:8	DACFR_VOLUME	VOLUME CONTROL (3/8) dB/level 0xFF:+24 dB 0xBF: 0 dB 0xBE: -3/8 dB	RW	BE
		0x00 : -72 dB		
7:0	DACFL_VOLUME	VOLUME CONTROL (3/8) dB/level 0xFF:+24 dB 0xBF: 0 dB 0xBE: -3/8 dB 0x00: -72 dB	RW	BE

5.1.2.4 DAC_ANALOG0

DAC Analog Register

Offset = 0x04

Bit(s)	Name	Description	Access	Reset
15:14	PAIB	PA bias current control. 11:biggest 00:smallest	RW	01
13:12	OPDAVB	OPDA bias voltage control. 11:biggest 00:smallest	RW	01
11	-	Reserved	-	-
10:8	OPDAIB	OPDA bias current control. 111:biggest 000:smallest	RW	011
7:6	OPDTSIB	OPDTS bias current control. 11:biggest 00:smallest	RW	01
5:4	OPVBIB	OPVB bias current control. 11:biggest 00:smallest	RW	01
3	-	Reserved	-	-
3	KFEN	Karaoke Mix Function Enable 0:disable 1:enable Note: when enable this bit, MICOINL and MICOINR will be added and transmitted to PA	RW	0
2:0	OPGIB	OPG bias current control.	RW	101

	111:biggest	
	000:smallest	

5.1.2.5 DAC_ANALOG1

DAC Analog Register

Offset = 0x05

Bit(s)	Name	Description	Access	Reset
		MIC mute,		
15	MICMUTE	0: mute	RW	0
		1: Unmute		
		FM mute,		
14	FMMUTE	0: mute	RW	0
		1: Unmute	X	
13:11	-	Reserved	-	-
		DACFL&FR Playback Mute		
10	DACFL_FRMUTE	0: mute DAC Playback,	RW	0
		1: enable DAC playback		
		PA output stage IQ control.		
9:8	PAIQ	00:smallest	RW	00
		11:biggest		
		Zero data for DAC analog part		
7	ZERODT	0:disable,	RW	0
		1:enable		
		PA output swing select.		
		0:2.828Vpp		
		1:1.6Vpp		
	./	This bit will control the attenuation before		
		DAC's output goes into PA.		
_	PASW	Set this bit to 1 when PA is driving a	RW	1
6	PASW	headphone, there must to be attenuation for	KW	1
		DAC's output (from about 2.4Vpp to 1.6Vpp)		
		and PA will output 1.6Vpp at max volume.		
		Set it to 0, there will be no attenuation and PA		
\		will output 2.4Vpp and can function as		
	<i>Y</i>	LINEOUT.		
		Headphone Amp Volume Control.		
		41 levels in total		
5:0	VOLUME	(Values between 0b000000 and 0b101000 are	RW	000000
3.0	V OLUME	valid. Any value over 0b101000 set to it will be	I K VV	000000
		taken as 0b101000 actually. Reading value will		
		just show what you have written to it.)		

5.1.2.6 DAC_ANALOG2

DAC Analog2 Register

Offset = 0x06

Bit(s)	Name	Description	Access	Reset
		PA Output Volume Near Zero Detect:		
		0:Invalid		
15	D. CD	1:Valid	DIII	0
15	PAZD	When this bit is selected 1, "click" of volume	RW	0
		tuning will cut down. But if small volume is		
		selected, this bit should be 0 to avoid some issue.		
14:12	-	Reserved	-	-
		DAC Current select:		
11	DACI	0:Small	RW	0
		1:Large	• 6	7
		PA bias Double for ATP2 mode:		
10	P2IB	0: *1	RW	0
		1: *2		
		For ATP2,On-chip ramp Connect EN:	Y	
9	ATP2CE	0: Disconnect	RW	0
	1111 202	1: Connect		
		Antipop2 PA discharge control:		
8	PAVDC	0: switch open	RW	0
		1: switch closed, discharge		
		FML add FMR to PAL and PAR		
7	FLRADD	0: disable	RW	0
		1: enable		
		DAC to PA output mix configure:		
6	PAMIX	0: not mix	RW	0
		1:DACFL+DACFR to AOUTFL and AOUTFR		
		Direct Drive overload protect and recover		
5	DDOVV	0: Overload protect and recover is valid	RW	0
	· A	1: Overload protect and recover is invalid		
		Analog circuit of the internal DAC_OPVRO		
		enable		
4	OPVROEN	0: Disable	RW	0
7	/ /	1: Enable		
1		Direct Drive antipop_VRO Resistant Connect		
2	DD ATTOR	Enable:	DW	
3	DDATPR	0: disconnect	RW	0
		1: connect		
		Analog circuit of the internal DAC_OPVRO		
• •	0.000	output stage IQ control.	D	000
2:0	OPVROOSIB	111:biggest	RW	000
		000:smallest		

5.1.2.7 DAC_ANALOG3

DAC Analog3 Register

Offset = 0x07

Bit(s)	Name	Description	Access	Reset
15	-	Reserved	-	-
		DAC VRO overload state:		
14	OVLS	1: VRO overload	R	0
		0: VRO normal working state		
		Volume change Delay bit:		
13	VLCHD	0: disable	RW	0
		1: enable	• 6	
12:11	-	Reserved	VA	1
		All DAC&PA Bias enable		
10	BIASEN	0: disable	RW	0
		1: enable		
		Channel FR&FL Antipop2 LOOP2 enable		
9	ATPLP2_FR_FL	0: disable	RW	0
		1: enable		
		OPCM1 bias current control.		
8:7	OPCM1IB	11:biggest	RW	01
		00:smallest		
		OPVRO bias current control.		
6:4	OPVROIB	000:smallest	RW	011
		111:biggest		
		PA FR&FL output stage enable		
3	PAOSEN_FR&FL	0: disable	RW	0
		1: enable		
		PA FR&FL enable		
2	PAEN_FR&FL	0: disable	RW	0
	X	1: enable		
		DAC FL ANALOG enable		
1	DACEN_FL	0: disable	RW	0
7		1: enable		
Y	7	FR DAC ANALOG enable		
0	DACEN_FR	0: disable	RW	0
		1: enable		

5.1.2.8 ADC_DIGITALCTL

ADC0 Digital Control Register

Offset=0x08

Bits	Name	Description	Access	Reset
15:13	-	Reserved	-	1

		ADC OUTPUT SELECT		
12	ADCOS	0: I2S OUTPUT	RW	0
		1: Reserved		
		ADC0L And ADC0R Added enable		
		0: disable		
11	A DOL D	1: enable	RW	0
11	AD0LR	Note: this bit is designed for karaoke use, when this bit i	s	U
		1, ADC0L data and ADC0R data are added and transmitted	1	
		to MCU.		
10	-	Reserved	- /	-
		ADC0 DIGITAL Gain Control		
		0000: 0dB	4,6	N
		0001: 3dB		
		0010: 6dB	V	
		0011: 9dB		
		0100: 12dB		
		0101: 15dB		
		0110: 18dB		
9:6	ADGC0	0111: 21dB	RW	0000
		1000: 24dB		
		1001: 27dB		
		1010: 30dB		
		1011: 33dB		
		1100: 36dB		
		1101: 39dB		
		1110: 42dB		
		1111: 45dB		
5:0	-	Reserved	-	-
	•			•

5.1.2.9 ADC_HPFCTL

ADC Digital Control Register

Offset=0x09

Bits	Name	Description	Access	Reset
15:8	-	Reserved	1	-
		SR select for removing wind noise filter0		
		00:8kHz/11.025kHz/12kHz		
7:6	SRSEL0	01:16kHz/22.05kHz/24kHz	RW	00
		10:32kHz/44.1kHz/48kHz		
		11:Reserved		

Version 2.3 Page 21

		Wind I	Noise f	ilter0 Cut	Off fr	equenc	y setting	s:					
						SF	s fs(kHz))					
			8	11.025	12	16	22.05	24	32	44.1	48		
		000	82	113	122	82	113	122	82	113	122		
		001	102	141	153	102	141	153	102	141	153		
5:3	WNHPF0CUT	010	131	180	196	131	180	196	131	180	196	RW	000
		011	163	225	245	163	225	245	163	225	245		
		100	204	281	306	204	281	306	204	281	306		
		101	261	360	392	261	360	392	261	360	392		
		110	327	450	490	327	450	490	327	450	490		
		111	408	563	612	408	563	612	408	563	612		
		Select	High I	Pass Filter	0 for I	OC offs	et or Wi	nd Noi	se			U	
2	HPF0DW	0: for DC offset								RW	0		
		1: for \	Wind N	Voise									
		High F	ass Fil	lter0 L En	able						7		
1	HPF0LEN	0: enal	ole) '		RW	0
		1: disa	ble										
		High F	ass Fil	lter0 R En	able								
0	HPF0REN	0: enal	ole				X	7				RW	0
		1: disa	ble										

5.1.2.10 ADC_CTL

ADC control register

Offset=0x0A

Bits	Name	Description	Access	Reset
15	-	Reserved	-	-
		FM input left channel enable;		
14	FMLEN	0: Disable	RW	0
		1: Enable		
		FM input right channel enable;		
13	FMREN	0: Disable	RW	0
		1: Enable		
		FM input gain control:		
		000:-3.0dB		
		001:-1.5dB		
		010:0.0dB		
12:10	FMGAIN	011:1.5dB	RW	010
		100:3.0dB		
		101:4.5dB		
		110:6.0dB		
		111:7.5dB		
9:8	-	Reserved	-	-

		MICO: ALCI IE II I		
		MIC0 input L Channel Enabled		
7	MIC0LEN	0: disable	RW	0
		1: enable		
		MIC0 input R Channel Enabled		
6	MIC0REN	0: disable	RW	0
		1: enable		
		MIC0 input Fully differential or Single ended select		
5	MIC0FDSE	0: Fully Differential;	RW	0
		1: Single Ended;		
		ADC0 Left Channel Enable	^	
4	AD0LEN	0: disable	RW	0
		1: enable	4 6 6	U
		ADC0 Right Channel Enable		
3	AD0REN	0: disable	RW	0
		1: enable		
		PA OUT TO ADC ENABLE		
2	ATAD	0: disable	RW	0
		1: enable		
		MIC TO ADC ENABLE		
1:0	MTA	0: disable	RW	0
		1: enable		

5.1.2.11 AGC_CTL0

AGC0 Control Register 0

Offset = 0x0B

Bits	Name	Description	Access	Reset
		AMP1 Left Channel Gain Select :		
		0000: 16.5dB		
	• (0001: 18.0dB		
		0010: 19.5dB		
	7	0011: 21.0dB		
		0100: 22.5dB		
		0101: 24.0dB		
\	7-7	0110: 25.5dB		
15:12	AMP1G0L	0111: 27.0dB	RW	1001
		1000: 28.5dB		
		1001: 30.0dB		
		1010: 31.5dB		
		1011: 33.0dB		
		1100: 34.5dB		
		1101: 36.0dB		
		1110: 37.5dB		
		1111: 39.0dB		

		AMP1 Right Channel Gain Select:		
		0000: 16.5dB		
		0001: 18.0dB		
		0010: 19.5dB		
		0010: 19.3dB 0011: 21.0dB		
		0100: 22.5dB		
		0101: 24.0dB		
		0110: 25.5dB		
11:8	AMP1G0R	0111: 27.0dB	RW	1001
11:8	AMPIGUR	1000: 28.5dB	KW	1001
		1001: 30.0dB		
		1010: 30.0dB		
		1011: 33.0dB	A 0	
		1100: 34.5dB		
		1100: 34.3dB 1101: 36.0dB		
		1110: 37.5dB		
		1111: 39.0dB		
	IMICSHD	Internal MIC Power Controlled by External MIC Plug enable		
7		0: disable	RW	0
		1: enable		
		External MIC Power VMIC enabled		
6	VMICEXEN	0: disabled	RW	0
O	VIVICEXEIV	1: enabled	KW	0
		External MIC Power VMIC voltage setting		
		00 2.7V		
5:4	VMICEXST	00 2.7V 01 2.9V	RW	1
3.4	VIVICEAST	10 3.1V	KW	1
		11 3.2V		
	• (Internal MIC Power VMIC Control		
3	VMICINEN	0:disable	RW	0
3	VIVIICINEN	1:enable	KW	U
		AMP1 Gain Boost Range Select		
		000: +3.0dB		
\	/ /	000: +6.0dB		
		010: +9.0dB		
2:0	AMP0GR1	011: +12.0dB	RW	011
2.0	Z MVII OOKI	100: +13.5dB	17.44	011
		101: +15.0dB		
		110: +16.5dB		
		111: +18.0dB		
		111. ±10.UUD		

5.1.2.12 AGC_CTL2

AGC Control 2 Register

Offset=0x0D

Bits	Name	Description	Access	Reset
15:10	-	Reserved	-	-
		ADC0 MIC to PA Path differential compensation enable		
9	MICAAEN	0: Disable	RW	0
		1: Enable		
8:7	-	Reserved	-	-
		MIC gain 0dB enable		
6	MGE	0:disable	RW	0
		1:enable		
5:0	-	Reserved	- 0	

5.1.2.13 ADC_ANALOG0

ADC Analog 0 Register

Offset=0x0E

Bits	Name	Description	Access	Reset
	IVSRMSTN	IVSRMS bias tune		
		000: -25%		
		001: -18.75%		
		010: -12.5%		
15:13		011: -6.25%	RW	100
		100: 0% (Baseline value 2μA)		
		101: +6.25%		
		110: +12.5%		
		111: +18.75%		
	EICDL	Earphone input current dectec level (mA)		
12:11		00:0.9		
		01:1.0	RW	0
		10:1.1		
		11:1.2		
		Earphone or headset out current detect level (μA)		
		00:10		
10:9	EHOCDL	01:20	RW	1
		10:30		
		11:40		
8	-	Reserved	-	-

F			1	1
7: 5		The bias current select for OPAD1 in A/D:		
		000: 3μΑ	RW	011
		001: 4μΑ		
		010: 5μΑ		
	ODDC1	011: 6μΑ		
	OPBC1	100: 7μΑ		
		101: 8μΑ		
		100: 9μΑ		
		110: 10μΑ		
		111: 11μΑ	A	
		The bias current select for OPAD2/3 in A/D:		
4:3	OPBC23	00: 2μΑ	• 67	W /
		01: 3μΑ	RW	01
		10: 4μΑ	\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\	
		11: 5μΑ		
	VRDABC	Audio A/D Voltage Reference bias current select:		
2:0		000: 2μΑ		
		001: 3μΑ		
		010: 4μΑ	RW	001
		110: 8μΑ		
		111: 9μΑ		

5.1.2.14 ADC_ANALOG1

ADC Analog 1 Register

Offset=0x0F

Bits	Name	Description	Access	Reset
	LPFBC	Audio A/D LPF bias current select:	RW	100
		000: 3.0μΑ		
		001: 3.5μΑ		
		010: 4.0μA		
15:13		011: 4.5μΑ		
		100: 5.0μΑ		
		101: 5.5μΑ		
		110: 6.0μΑ		
		111: 6.5μΑ		
	LPFBUFBC	FD LPF BUF OP bias current select:		
		00: 4μΑ		
12:11		01: 5μΑ	RW	01
		10: 6μΑ		
		11: 7μΑ		
	ADCBIAS	ADC Total Bias Tune		
10		0: Normal	RW	0
		1: +50%		

9 :8		Reserved		
7.0			-	-
		MIC Preamp FDOP1 bias current select :		
		00: 3μA		
7:6	FD1BC	01: 4μA	RW	01
		10: 5μΑ		
		11: 6μΑ		
		MIC Preamp FDOP2 bias current select :		
		00: 2μΑ		
5:4	FD2BC	01: 3μΑ	RW	01
		10: 4μA		
		11: 5μΑ		
		MIC Preamp FDOP2 bias current select :	• , 6	
		00: 2μΑ	X	
3:2	FD1BUFBC	01: 3μΑ	RW	01
		10: 4μA		
		11: 5μΑ		
		FM Pre-amplifiers bias current select:		
		00: 3μΑ		
1:0	FMBC	01: 4μΑ	RW	01
		10: 5μΑ		
		11: 6μΑ		

5.2 Audio Characteristics

The audio characteristics are measured under the following conditions:

$$AVCC = 2.9V$$
, $VCC = 3.1V$, $VDD = AVDD = 1.8V$, $Vref = 1.5V$.

When testing DAC+PA or PA, a 160hm or 320hm load resistor is applied.

5.2.1 DAC+PA

Table 5-3 DAC + Direct Drive PA characteristics

Characteristics	Min	Тур	Max	Unit
Noise		12		μV
SNR		93.3		dB
SNR(A-Weighting)		96.8		dB
Dynamic Range (-48dB Input)		95		dB
Dynamic Range (A-Weighting, -48dB Input)		98		dB
THD+N (0dB Input)		-85		dB
Max Ampl (0dB Input)		588		mV
Max Power		20.6		mW
Lateral and Latera (1111- OdD die and 1224)		-82dB /-82dB		dB
Interchannel Isolation (1kHz, 0dB sine wave Input)		(L mute/R mute)		uБ

Table	5 1 DAC	· Mars Dire	ant Duina DA	@EC_40V	characteristics
tante	3-4 DAC	+ Non-Dure	eci Drive PA	wr o = 40 h	cnaracieristics

Characteristics	Min	Тур	Max	Unit
Noise		11.5		μV
SNR		96		dB
SNR(A-Weighting)		98.5		dB
Dynamic Range (-48dB Input)		94		dB
Dynamic Range (A-Weighting, -48dB Input)		97		dB
THD+N (0dB Input)		-85		dB
Max Ampl (0dB Input)		575	^	mV
Max Power		20.2@220μF		mW
Interchannel Isolation (1kHz, 0dD Sine ways Input)		-86dB/-84dB	7.6	dB
Interchannel Isolation (1kHz, 0dB Sine wave Input)		(L mute/R mute)		uB

Figure 5-2 shows the frequency Response of DAC @ INPUT AMP = 0dB & load = 16R:

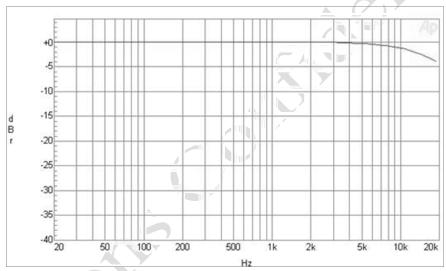


Figure 5-2 Frequency Response of DAC

Figure 5-3 below gives the FFT spectrum of DAC @ INPUT AMP = 0dB & 1 kHz:

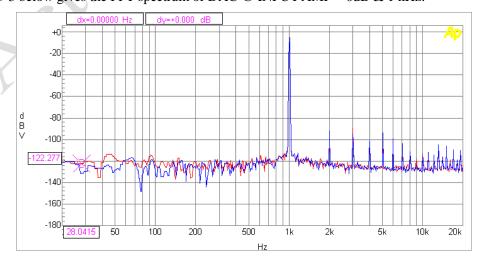


Figure 5-3 DAC FFT response

5.2.2 PA

Table 5-5 Non-Direct Drive PA characteristics

Characteristics	Min	Тур	Max	Unit
Noise		14		μV
SNR		93.5		dB
Dynamic Range		93		dB
THD+N		-82		dB
Output Common Mode Voltage		1.505	A	Vrms
Full Scale Output Voltage@-60dB THD+N		0.650Vrms(2Vpp)		Vrms
Output Power @16.5Ohm		25mW		mW

Figure 5-4 below is the frequency Response of the Non-direct Drive PA @1.6Vpp input:

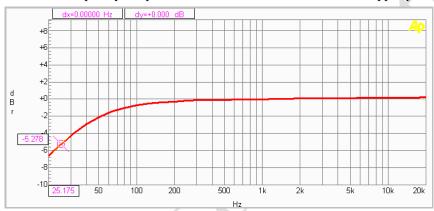


Figure 5-4 Frequency Response

Figure 5-5 gives the THD+N vs. INPUT AMP Curve of the Non-direct Drive PA:

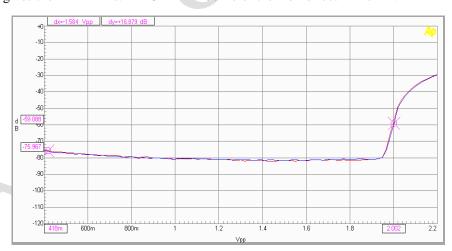


Figure 5-5 THD+N vs. INPUT AMP Curve

Table 5-6 Direct Drive PA Characteristics

Characteristics	Min	Тур	Max	Unit
Noise		16		μV
SNR		92.3		dB
Dynamic Range		92.1		dB

THD+N	-81	-78	dB
Output Common Mode Voltage	1.5		Vrms
Full Scale Output Voltage@-60dB THD+N	0.660Vrms(2Vpp)		Vrms
Output Power @16Ohm	26		mW

Figure 5-6 below is the Frequency Response of Direct Drive PA @1.6Vpp input:

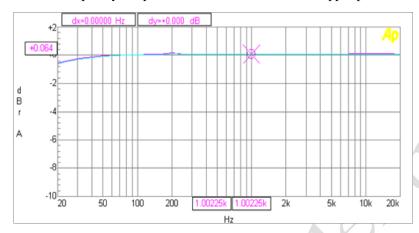


Figure 5-6 Frequency Response

Figure 5-7 is the THD+N vs. INPUT AMP Curve of the Direct Drive PA:

Figure 5-7 THD+N vs. Input AMP

5.2.3 ADC

Table 5-7 ADC characteristics

Test condition: Temp =25 °C, AVCC = 3.0V, VCC = 1V, VDD = AVDD = 1.8V, Vref = 1.5V @2Vpp, 1 kHz, sine wave input

Characteristics	Min	Тур	Max	Unit
Dynamic Range (-40 dBFS Input), unweighting		91		dB
Dynamic Range (-40 dBFS Input), weighting		92.7		dB
THD+N, unweighting		-85		dB
THD+N, weighting		-87.5		dB

6 TWI Interface

6.1 Features

ATC2603C can be accessed by Master through a standard TWI (Two-Wire Interface), which allows Master to write commands to and read status from ATC2603C by accessing its registers. TWI only occupies two pins namely SCL (Serial Clock) and SDA (Serial Data), information is transmitted serially on SDA and clock is driven on SCL by Master. ATC2603C is a slave device controlled by Master, The transmission speed of TWI interface supports 400Kbps, 8-bit address and 16-bit data width with MSB transmitted first. The default slave address is 0xCA.

A typical sequence of Writing 16-bit data to a register is shown in the Figure below. A start bit is generated by Master, followed by a slave address, then register address and 16-bit data. A SACK acknowledge signal will be given by ATC2603C after every byte address or data transmission. The transmission stops when Master sends a stop bit. All the 16-bit data should be written before the register is updated.

Figure 6-1 Writing 16-bit data to register through TWI bus

The Figure above shows a sequence of writing a 16-bit data 0xF080 to register 0x31, the slave address is 0xCA.

A typical 16-bit data read sequence is shown below. Firstly, Master writes slave address and register address to ATC2603C. Then a start bit and the slave address is sent indicating a read sequence started. In the following 8-bit clock, Master reads data from ATC2603C, during which Master sends a MACK signal every 8-bit data or address, mNACK signal will be sent to ATC2603C to stop the reading process, then Master generates a stop bit indicating the reading is completed.

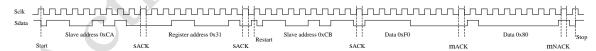


Figure 6-2 Reading 16-bit data from register through TWI bus

The Figure above illustrates Master reads 16-bit data 0xF080 from register 0x31, the slave address is 0xCA.

6.2 Register List

Table 6-1 TWI Interface Register Block Address

Block Name	Base Address
TWSI_REGISTER	0xF8

Table 6-2 TWI Register Offset

Offset	Register Name	Description
0x08	SADDR	TWI serial interface slave device register

6.3 Register Description

6.3.1 SADDR

Two-Wire Serial interface slave device address register

Offset = 0x08

Bit(s)	Name	Description	Access	Reset
15:8	-	Reserved		-
		Slave device address		
7:1	SDA	The register contains the slave device address	RW	0x65
		used in slave mode.		
		Filter pulse Cycle select		
0	FCS	0: filter 2 cycles noise(83.3ns)	RW	0
		1: filter 1 cycle noise(41.7ns)		

7 Power Management Unit

7.1 Features

The highly integrated Power Management Unit (PMU) in ATC2603C provides a full solution for the single cell lithium battery power system, the communication with Master is done through TWI interface. PMU consists of 3 DC-DCs, 9 LDOs (one of which is SWITCH-LDO), 10-bit multiplex ADC, one linear charging-management unit, fuel gauge, and self-adaption power distribution control unit etc, automatically monitoring abnormal power conditions like overvoltage, overcurrent, undervoltage and overtemperature, etc.

The linear charging-management unit for Li-Ion battery adjusts the charging current automatically according to the battery's status, including trickle, CC (Constant Current) and CV (Constant Voltage) charging phase, with maximum charging current of 2A. Furthermore, it also supports overcharge protection and timeout protection, etc.

Self-Adaption Power Distribution (APDS) control module is an integrated unit inside PMU, which controls the power distribution and seamless power switching among BAT, VBUS and WALL to guarantee a stable power supply for the whole system. The minimum Standby current can be lower than $30\mu A$. The input voltage of integrated 10-bit, 16-channel Analog-to-Digital converter (AuxADC) ranges from 0V to 3V, is used for detecting the voltage, current and temperature.

7.2 Module Description

7.2.1 DC-DC Module

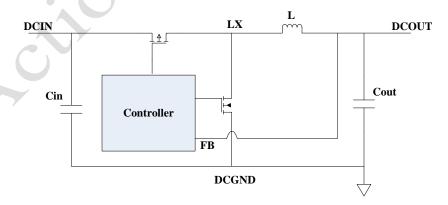


Figure 7-1 ATC2603C Buck DC-DC circuit diagram

ATC2603C integrates 3 Buck DC-DCs: DC-DC1, DC-DC2 and DC-DC3. All the 3 Buck DC-DCs are synchronized controlled and integrates internal MOSFET. For normal application, one inductor and two capacitors should be applied outside. The key parameters and recommended components selection is listed in Table 7-1 below.

Buck	Vin (V)	Vout (V)	Adjustabl e Voltage Step (mV)	Imax (A)	L	Cin/Co ut	Applicat ion
DC-DC1	3.3~5.	0.7~1.4	25	1.2	2.2μH(DCR	10μF/2	Master
DC-DC1	5	0.7~1.4	23	1.2	<0.05Ohm)	0μF	core
DC-DC2	3.3~5.	1.3~2.15	50	1	2.2μH(DCR	10μF/2	DDR
DC-DC2	5	1.5~2.15	30	1	<0.05Ohm)	0μF	אטע
DC-DC3	3.3~5. 5	2.6~3.3	100	1	4.7μH(DCR <0.1Ohm)	10μF/2 0μF	Master/A TC2603 C IO

Table 7-1 Key parameters and External components selection for DC-DCs

Note: the maximum current of DC-DC3 is 800mA when working without inductance.

The Efficiency characteristics of these DC-DCs are shown in Figure 7-2

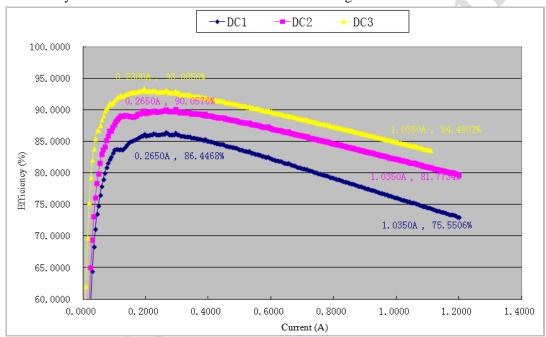


Figure 7-2 ATC2603C Buck DC-DCs Efficiency curve

7.2.2 LDO Module

ATC2603C integrates 9 LDOs in total, their specifications are listed below in Table 7-2. LDO support output overvoltage, overcurrent and undervoltage protection. Whenever the output voltage exceeds the overvoltage range, LDOs will generate an overvoltage interrupt, besides, the LDOs overvoltage protection can be enabled or disabled through the relevant register. Overcurrent and Undervoltage are the same mechanism.

Table 7-2 LDO regulators specifications

Regulator	Vin (V)	Vout(V)	Imax(mA)	Cin(µF)	Cout(µF)	Application Reference
LDO1	3.0~5.5	2.6~3.3	200	0.1	2.2	Sensor2V8
LDO2	3.0~5.5	2.6~3.3	200	0.1	2.2	Master/ATC2603C

						AVCC
LDO3	3.0~5.5	1.5~2.0	250	0.1	2.2	ATCVDD1V8
LDO5	3.0~5.5	2.6~3.3	150	0.1	2.2	TPVCC
LDO6	3.0~5.5	0.7~1.4	200	0.1	2.2	Master AVDD
LDO7	3.0~5.5	1.5~2.0	200	0.1	2.2	Sensor1V8
LDO11	3.0~5.5	2.6~3.3	25	0.1	1.0	SVCC
LDO12	3.0~5.5	1.5~2.0	15	0.1	1.0	RTCVDD
SWITCH-			400			SD Card
LDO	-	-	400	-	_	SD Calu

Note1: LDO12 output voltage is dependent with supply voltage and is not adjustable. The relationship between LDO3 and LDO12 is not fixed, LDO3 voltage is register adjustable.

Note2: when SWITCH-LDO is configured to SWITCH mode, the output voltage equals the input voltage; when SWITCH-LDO is configured as LDO, the output voltage ranges 3.0~3.3V, and its input is tied internally.

7.2.3 Charger Module

ATC2603C integrates one constant current and constant voltage charger, providing battery detection, trickle current charging and it can adjust the charging current according to system power consumption. When an external adaptor is plugged in, the battery's existence is detected by ATC2603C PMU according to the voltage on BAT PIN, once SYSPWR is detected higher than battery voltage (VBAT), the charger will be enabled by software and ATC2603C PMU will manage the charging process automatically. Charging current can be configured through register (max 2A) and the real-time charging current can be read by the ADC charging current register.

The IC internal temperature and battery temperature are monitored throughout the charging process, once the temperature is detected higher or lower than the standard value, an interrupt signal will be sent, and software will take measures then charging process will be paused. The battery's temperature is measured by the circuit shown in Figure 7-3 below.

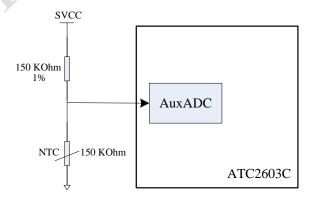


Figure 7-3 ATC2603C Battery Temperature Detecting Diagram

7.2.4 APDS Module

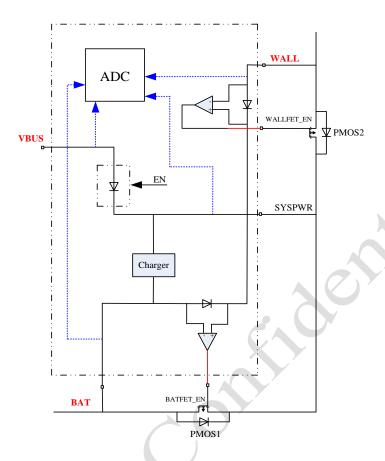


Figure 7-4 APDS Module Diagram

ATC2603C APDS (Adaptive Power Distribute System) block diagram (for CHIP_VER(0xDC)=0x0) is shown in Figure 7-4 above. SYSPWR is a public power supply node for all the DC-DCs and LDOs. PMU gets power from BAT, VBUS and WALL and then supplies to the public node SYSPWR through a diode respectively in the IC. To prevent current from flowing from VBUS to SYSPWR in OTG application, an enable control pin (EN) is applied to the diode between VBUS and SYSPWR. When this diode is disabled, the path from BUS to SYSPWR will be cut off completely. PMU needs to supply high power, in order to reduce internal thermal dissipation, two external MOSFET PMOS1 and PMOS2 are applied to bypass big current, see in Figure 7-4 above.

Note that for CHIP_VER(0xDC)=0x1, the diode is replaced by a LDO, the mechanism is identical. Voltages on BAT, VBUS, WALL and SYSPWR nodes as well as the current flows through each diode are monitored since the system is powered on. Once the output voltage of BAT exceeds the upper or lower limits, PMU will send BAT overvoltage or undervoltage interrupt to INTS module. When the current through BAT path is detected higher than the set value, a BAT overcurrent interrupt will be sent to INTS module, what's more, if this current exceeds overcurrent shut-off value, the power will be forced to shut off to protect IC. If VBUS and WALL are detected overvoltage, undervoltage or overcurrent, the same process will be triggered as BAT does.

7.2.5 Power Modes

According to the application, the following 4 types of power modes are distinguished:

- S1-Working Mode: In Working Mode, Master can work normally including its kernel and IOs, that is to say, DC-DC1 and DC-DC3 needed by the Master and ATC2603C must work properly. LDO1, LDO2, LDO3, LDO6, LDO11, LDO12 and their related control logic circuits should work. Other regulators can be either on or off. This state is called S1.
- S2-Standby Mode: Both Master IC's kernel and IOs are shut off in this mode, DC-DC1, DC-DC3, LDO1, LDO2, LDO3 and LDO6 are powered off accordingly, LDO11 and LDO12 is still on. Essential information is saved in DDR for fast start-up, so DC-DC2 should work normally. The communication between Master and ATC2603C is disabled. We called this state S2.
- S3-Sleep Mode: When the device is not used for a long time, the system will enter S3 state, which is a low power state. In this case, DDR will be power down, but SYSPWR still supplies the system. Only LDO11 and LDO12 is on, others are all power off.
- **S4-Deep Sleep Mode**: In this mode, the power consumption is reduced more deeply than standby mode, LDO11 is power down, and only LDO12 is on.

Wakeup elements:

The system can be woke up in different conditions, which involves several wake up elements including ONOFF, ALARM, SGPIOIRQ, RESET, REM_CON, USB, WALL, HDSW, IR. In S2 and S3, each of the elements above can wake up the system. In S4, SVCC is shut off, only RTCVDD exists, so only SGPIOIRQ, REM_CON and IR cannot wake up the system, others can wake up the system. Either long or short press on ONOFF button can wake up the system, which can be enabled or disabled by the register. In S1 mode, the system can be configured into S2, S3 or S4 by software, setting the related bits EN_S1, EN_S2, EN_S3, shown in Table 7-3 below.

Power State	EN_S1	EN_S2	EN_S3
S4	0	0	0
S3	0	0	1
S2	0	1	X
S1	1	X	X

Table 7-3 Power State changed by Software

Note: When the system need to go into S2 from S1, set $EN_S2=1$ first, then write 0 to EN_S1 , to switch the system from S1 mode to S2.

Overcurrent protection:

If one of the LDOs is overcurrent, and overcurrent interrupt is sent, PWROK will be pulled down first, and then it will enter Standby state by setting EN_S2 and EN_S3.

If overcurrent is detected on BAT, WALL or VBUS, and its overcurrent shut off function is enabled, then it will entering Standby state according to the settings of EN_S2 and EN_S3.

Overtemperature protection:

When the temperature in IC exceeds the settings, and its overtemperature protection is enabled, then the system will enter Standby state by setting EN_S2 and EN_S3 automatically.

7.2.6 POR and Power ON/OFF Sequence Module

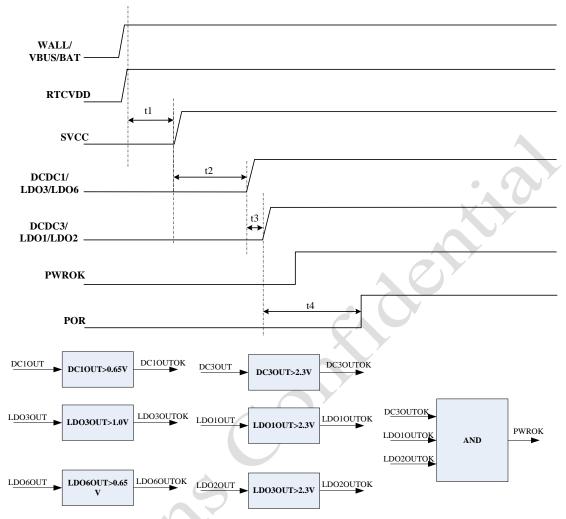


Figure 7-5 Power on Sequence

Figure 7-5 above shows ATC2603C power on sequence, the power of BAT or WALL or VBUS is turned on firstly, RTCVDD and SVCC will be generated closely after that. Then ATC2603C's core voltage (1.8V) and Master's core voltage (1.0V) will be applied. The high-voltage supply for ATC2603C and Master will be generated afterwards. At last, when all these power is stable, the POR signal will be sent to Master, which indicates the Master starts to run. The timing parameter is of power on sequence is listed in Table 7-4 below.

Table 7-4 Timing Parameter of Power on Sequence

Parameter	Tmin(ms)	Tmax(ms)
t1	35.6	81.3
t2	26.1	72.7
t3	2.4	6.2
t4	33.8	92.5
DC-DC3 to LDO1 and LDO1 to LDO2	0	0.12

If the system is set to power down by software, Master will send commands to ATC2603C, on

receiving the commands, ATC2603C will pull down PWROK and POR, then shut off DC-DC1, DC-DC3, LDO1, LDO2, LDO3 and LDO6.

If system is force to power down, then if any of DC1OUTOK, DC3OUTOK, LDO1OUTOK, LDO2OUTOK, LDO3OUTOK or LDO6OUTOK is detected high to low, ATC2603C will pull POR down immediately.

7.2.7 ONOFF & Reset Module

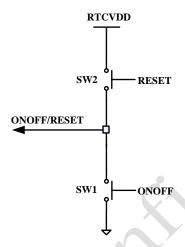


Figure 7-6 ONOFF & Reset Module Diagram

In the PMU, ONOFF and Reset multiplex one PIN (ONOFF/RESET), shown in figure 7-6. Either ONOFF or RESET button is pressed down, SYSRST or SYSONOFF signal will be high and generates a trigger to PMU through ONOFF/RESET pin accordingly. If the RESET and ONOFF buttons are pressed down at the same time, all the registers in RTCVDD voltage domain will be reset. Long press on ONOFF button for more than a setting period (6s, 8s, 10s or 12s) will trigger a same function like P_RESET to reset the whole system.

7.2.8 PWM Module

PWM module get the divided clock by register PWMCLKDIV from Master, and there are two PWM modules, PWM0 and PWM1, which can be used for breath light control.

7.3 Register List

Table 7-5 PMU Block Address

Name	Base Address
PMU	0x00

Table 7-6 PMU Controller Registers

Offset	Register Name	Description
0x00	PMU_SYS_CTL0	PMU SYSTEM CONTROL Register0

0.01	DMIL GMG COM 4	DI (II (IV)(TEL) (CO)(TELO) D
0x01	PMU_SYS_CTL1	PMU SYSTEM CONTROL Register1
0x02	PMU_SYS_CTL2	PMU SYSTEM CONTROL Register2
0x03	PMU_SYS_CTL3	PMU SYSTEM CONTROL Register3
0x04	PMU_SYS_CTL4	PMU SYSTEM CONTROL Register4
0x05	PMU_SYS_CTL5	PMU SYSTEM CONTROL Register5
0x0A	PMU_BAT_CTL0	PMU BAT CONTROL Register0
0x0B	PMU_BAT_CTL1	PMU BAT CONTROL Register1
0x0C	PMU_VBUS_CTL0	PMU VBUS CONTROL Register0
0x0D	PMU_VBUS_CTL1	PMU VBUS CONTROL Register1
0x0E	PMU_WALL_CTL0	PMU WALL CONTROL Register0
0x0F	PMU_WALL_CTL1	PMU WALL CONTROL Register1
0x10	PMU_SYS_PENDING	PMU SYSTEM Pending Register
0x11	PMU_DC1_CTL0	PMU DC-DC1 CONTROL Register0
0x14	PMU_DC2_CTL0	PMU DC-DC2 CONTROL Register0
0x17	PMU_DC3_CTL0	PMU DC-DC3 CONTROL Register0
0x1E	PMU_LDO1_CTL	PMU LDO1 CONTROL Register
0x1F	PMU_LDO2_CTL	PMU LDO2 CONTROL Register
0x20	PMU_LDO3_CTL	PMU LDO3 CONTROL Register
0x22	PMU_LDO5_CTL	PMU LDO5 CONTROL Register
0x23	PMU_LDO6_CTL	PMU LDO6 CONTROL Register
0x24	PMU_LDO7_CTL	PMU LDO7 CONTROL Register
0x28	PMU_LDO11_CTL	PMU LDO11 CONTROL Register
0x29	PMU_SWITCH_CTL	PMU SWITCH CONTROL Register
0x2A	PMU_OV_CTL0	PMU OVER VOLTAGE CONTROL Register0
0x2B	PMU_OV_CTL1	PMU OVER VOLTAGE CONTROL Register1
0x2C	PMU_OV_STATUS	PMU OVER VOLTAGE Status Register
0x2D	PMU_OV_EN	PMU OVER VOLTAGE Detect ENABLE Register
0x2E	PMU_OV_INT_EN	PMU OVER VOLTAGE INT ENABLE Register
0x2F	PMU_OC_CTL	PMU OVER CURRENT CONTROL Register
0x30	PMU_OC_STATUS	PMU OVER CURRENT Status Register
0x31	PMU_OC_EN	PMU OVER CURRENT Detect ENABLE Register
0x32	PMU_OC_INT_EN	PMU OVER CURRENT INT ENABLE Register
0x33	PMU_UV_CTL0	PMU UNDER VOLTAGE CONTROL Register0
0x34	PMU_UV_CTL1	PMU UNDER VOLTAGE CONTROL Register1
0x35	PMU_UV_STATUS	PMU UNDER VOLTAGE Status Register
0x36	PMU_UV_EN	PMU UNDER VOLTAGE Detect ENABLE Register
0x37	PMU_UV_INT_EN	PMU UNDER VOLTAGE INT ENABLE Register
0x38	PMU_OT_CTL	PMU OVER TEMPERTURE CONTROL Register
0x39	PMU_CHARGER_CTL0	PMU CHARGER CONTROL Register0
0x3A	PMU_CHARGER_CTL1	PMU CHARGER CONTROL Register1
0x3B	PMU_CHARGER_CTL2	PMU CHARGER CONTROL Register2
0x3D	PMU_APDS_CTL	PMU APDS CONTROL Register
UASD	I MO_AI DS_CIL	I WIO AI DO CONTROL REGISIEI

0x50	PMU_ICMADC	PMU ICMADC Register
0x62	PMU_ABNORMAL_STATUS	PMU Abnormal_Status Register
0x63	PMU_WALL_APDS_CTL	PMU WALL_APDS_CTL
0x64	PMU_REMCON_CTL0	PMU REMCONADC wake up control Register
0x65	PMU_REMCON_CTL1	PMU REMCONADC interrupt control Register
0x66	PMU_MUX_CTL0	PMU MUX CTL0 Register
0x67	PMU_SGPIO_CTL0	PMU SGPIO CTL0 Register
0x68	PMU_SGPIO_CTL1	PMU SGPIO CTL1 Register
0x69	PMU_SGPIO_CTL2	PMU SGPIO CTL2 Register
0x6A	PMU_SGPIO_CTL3	PMU SGPIO CTL3 Register
0x6B	PMU_SGPIO_CTL4	PMU SGPIO CTL4 Register
0x6C	PWMCLK_CTL	PWM clock controller register
0x6D	PWM0_CTL	PWM0 control register
0x6E	PWM1_CTL	PWM1 control register

7.4 Register Description

7.4.1 PMU_SYS_CTL0

PMU_SYS_CTL0 Register (RTCVDD) (default 0xE04B)

Offset = 0x00

Bit(s)	Name	Description	Access	Reset
15	USB_WK_EN	VBUS wake up enable, when exceeds the threshold voltage 1:VBUS can wake up 0:VBUS can't wake up	RW	0x1
14	WALL_WK_EN	WALL wake up enable, when exceeds the threshold voltage 1:WALL can wake up 0:WALL can't wake up	RW	0x1
13	ONOFF_LONG_ WK_EN	ONOFF long press wake up enable 1:ONOFF can wake up 0:ONOFF can't wake up	RW	0x1
12	ONOFF_SHORT _WK_EN	ONOFF short press wake up enable 1:ONOFF can wake up 0:ONOFF can't wake up	RW	0x0
11	SGPIOIRQ_WK _EN	SGPIOIRQ wake up enable 1: SGPIOIRQ can wake up 0: SGPIOIRQ can't wake up	RW	0x0
10	RESTART_EN	Restart enable 1:enable 0:default	RW	0x0

1				
		The default value is 0, when it is set to 1(If		
		WALL/VBUS exists, WALL/VBUS wakeup will be		
		HW disabled), the system will enter Standby Mode,		
		then wakes up automatically 2sec later, this bit will be		
		cleared to 0 at the same time.		
	REM_CON_WK	REM_CON button pressed wake up enable		
9	_EN	1:Rem_con can wake up	RW	0x0
	_EN	0:Rem_con can't wake up		
	ALADM WW E	Alarm wake up enable		
8	ALARM_WK_E N	1:Alarm can wake up	RW 🔷	0x0
	IN .	0:Alarm can't wake up		
		Hard switch wake up enable	. 6/7	7
7	HDSW_WK_EN	0:No	RW	0x0
		1:Yes	U >	
		P_Reset and ONOFF long press Reset wake up enable	/	
	DECEM WILLEN	0:No	DIV	0 1
6	RESET_WK_EN	1:Yes	RW	0x1
		This bit can be reset by RTCVDDOK only		
		IRwake up enable		
5	IR_WK_EN	0:No	RW	0x0
		1:Yes		
		VBUS wake up threshold voltage		
		00:4.05V		
4:3	VBUS_WK_TH	01:4.20V	RW	1
		10:4.35V		
		11:4.50V		
		WALL wake up threshold voltage		
		00:4.05V		
2:1	WALL_WK_TH	01:4.20V	RW	1
	'^	10:4.35V		
	X	11:4.50V		
		ONOFF multiplex enable		
0	ONOFF_MUXK	0:Disable (No P_RESET key)	RW	0x1
7	EY_EN	1:Enable (With P_RESET key)		
		. – • • • • • • • • • • • • • • • • • •		

7.4.2 PMU_SYS_CTL1

PMU_SYS_CTL1 Register (RTCVDD) (default 0x000E)

Offset = 0x01

Bit(s)	Name	Description	Access	Reset
		VBUS wakeup flag		
15	USB_WK_FLAG	1:VBUS wakeup	R	0x0
		0:No VBUS wakeup		

			r	,
		WALL wakeup flag		
14	WALL_WK_FLAG	1:WALL wakeup	R	0x0
		0:No WALL wakeup		
	ONOFF_LONG_WK_	ONOFF long press wakeup flag		
13	FLAG	1:ONOFF long press wakeup	R	0x0
	TEMO	0:No ONOFF long press wakeup		
	ONOFF_SHORT_WK	ONOFF short press wakeup flag		
12	_FLAG	1:ONOFF short press wakeup	R	0x0
	_1 12/10	0:No ONOFF short press wakeup		
	SGPIOIRQ_WK_FLA	SGPIOIRQ wakeup flag	A	
11	G	1: SGPIOIRQ wakeup	R	0x0
	O .	0: No SGPIOIRQ wakeup	• 6/)
		ONOFF_PRESS_Reset interrupt pending bit:		
10	ONOFF_PRESS_Reset	1: ONOFF_PRESS_Reset Interrupt occurs;	R	0**0
10	_IRQ_PD	0: no ONOFF_PRESS_Reset Interrupt	K	0x0
		Note:only for CHIP_VER(0xDC)=0X1		
	DEM CON WIZ ELA	REM_CON wakeup flag		
9	REM_CON_WK_FLA	1: REM_CON wakeup	R	0x0
	G	0: No REM_CON wakeup		
		Alarm wakeup flag		
8	ALARM_WK_FLAG	1:Alarm wakeup	R	0x0
		0: No Alarm wakeup		
		HDSW wakeup flag		
7	HDSW_WK_FLAG	1:HDSW wakeup	R	0x0
		0: No HDSW wakeup		
		reset wakeup flag		
6	RESET_WK_FLAG	1:Reset wakeup	R	0x0
		0: No reset wakeup		
	, O Y	IR wakeup flag		
5	IR_WK_FLAG	1:IR wakeup	R	0x0
		0: No IR wakeup		
		Low power state enter S4 voltage setting		
		00:2.9V		
		01:3.0V		
X		10:3.1V		
1.2	ID C4	11:3.3V	DW	0.1
4:3	LB_S4	When the system is in S1, S2, S3 and the	RW	0x1
		relative transition state, if the Battery voltage		
		is lower than settings and there is no VBUS		
		and WALL detected, the system enters S4		
		directly.		
		Low Power state enter S4 enable (including		
2	LB_S4_EN	detection enable)	RW	0x1
		0:Disable		
	l .	I .	l	

		1:Enable		
		Internal 32kHz clock enable		
1	ENRTCOSC	0:disable	RW	0x1
		1:enable		
		Enter S1state enable		
0	EN_S1	0:Do not enter S1	RW	0x0
		1:Enter S1		

7.4.3 PMU_SYS_CTL2

 $PMU_SYS_CTL2 \ Register \ (RTCVDD) \ (default \ 0x0680)$ Offset = 0x02

Bit(s)	Name	Description	Access	Reset
		ONOFF key is pressed or not		
15	ONOFF_PRESS	0:ONOFF key is not pressed	R	0x0
		1:ONOFF key is pressed		
		ONOFF short press pending		
1.4	ONOFF_SHORT_PRESS	0:No ONOFF short press happen	DW	00
14	UNUFF_SHURI_PRESS	1: ONOFF short press happen	RW	0x0
		Write 1 clear to 0		
		ONOFF long press pending		
12	ONOFF_LONG_PRESS	0:No ONOFF long press happen	RW	0x0
13		1:ONOFF long press happen	KW	UXU
		Write 1 clear to 0		
	Ċ	ONOFF interrupt enable		
12	ONOFF_INT_EN	0:disable	RW	0x0
		1:enable		
	. 0	ONOFF key press time settings		
		00:		
		60 ms < t < 0.5 s; judged as short press;		
		t >= 0.5s, judged as long press;		
		01:		
	7	60 ms < t < 1 s, judged as short press;		
11:10	ONOFF_PRESS_TIME	t >= 1s, judged as long press;	RW	0x01
		10:		
		60 ms < t < 2 s, judged as short press;		
		$t \ge 2s$, judged as long press;		
		11:		
		60ms < t < 4s, judged as short press;		
		t >= 4s, judged as long press;		
		ONOFF long press Reset&preset		
9	ONOFF_PRESS_Reset_EN	enable:	RW	0x1
		0:disable;		

		1:enable		
		Long press ONOFF send Reset time		
		selection		
8:7	ONOFF_RESET_TIME_S	00:6s	RW	0x01
0.7	EL	01:8s	KVV	UXUI
		10:10s		
		11:12s		
		S2 timer enable		
		0:Disable		
		1:Enable	A	
6	S2_TIMER_EN	When 2timer is enabled, once the	RW	0x0
		system enters S2 state, S2timer starts to	0 67	Y
		count, when it counts up the system will		
		enter S3 or S4 state.	\\ \frac{1}{2}	
		S2timer		
		000:6min		
		001:16min		
		010:31min		
5:3	S2TIMER	011:61min	RW	0x0
		100:91min		
		101:121min		
		110:151min		
		111:181min		
		ONOFF key press happen pending		
2	ONOFF_PRESS_PD	0:No ONOFF key press happen	RW	0x0
<u> </u>	ONOIT_FRESS_FD	1:ONOFF key press happen	IX VV	UXU
		Write 1 clear to 0		
	A	ONOFF button pressed for 32ms		
1	ONOFF_PRESS_INT_EN	interrupt enable	RW	0x0
1	ONOIT_FRESS_INI_EN	0:disable	I N VV	UXU
	X	1:enable		
		PMU simulation acceleration mode		
0	PMU_A_EN	enable	RW	0x0
	I IVIU_A_EIV	0:diasble	IX VV	UXU
X		1:enable		

7.4.4 PMU_SYS_CTL3

PMU_SYS_CTL3 Register (RTCVDD) (default 0x0080)

Offset = 0x03

Bit(s)	Name	Description	Access	Reset
15	EN_S2	Enter S2 state enable 0:do not enter S2	RW	0x0

		1:enter S2		
		Enter S3 state enable		
14	ENI C2	0:do not enter S3	RW	0x0
14	EN_S3	1:enter S3	KW	UXU
		S3 timer enable		
		0:Disable		
12	C2 TIMED EN	1:Enable	DW	0.0
13	S3_TIMER_EN	If S3 timer is enabled, when the system	RW	0x0
		enters S3 state, S3 timer starts to count,		
		when it counts up, the system will enter	/	
		S4 state.		
		S3timer	· ^ (
		000:6min	X	
		001:16min		
		010:31min		
12:10	S3TIMER	011:61min	RW	0x0
		100:91min		
		101:121min		
		110:151min		
		111:181min		
		When S2/S3 receives the wakeup signal,		
		enable delay of entering S1 from S2/S3		
9	S2S3TOS1TIMER_EN	0:disable, no delay from S2/S3 to S1	RW	0
		1:enable, delay for a while from S2/S3 to		
		S1		
		When S2/S3 receives the wakeup signal,		
		delay time setting of switching from		
		S2/S3 to S1		
8:7	S2S3TOS1TIMER	00: 3ms	RW	1
		01: 6ms		
	X	10: 12ms		
		11: 24ms		
6:4	-	Reserved	-	-
	7	VBUS pull out wakeup enable in S2		
X		mode		
		0:disable		
		1:enable		
3	USBS2OUT_WK_EN	When this bit is enabled, if VBUS if	RW	0
		pulled out, working mode will be		
		switched from S2 to S1. The wakup		
		voltage of pull out operation is		
		PMU_SYS_CTL0[4:3]		
	*****	WALL pull out wakeup enable in S2	D.V	
2	WALLS2OUT_WK_EN	mode	RW	0
۷	WALLD2UUI_WK_EN	mode	17.44	U

		0:disable		
		1:enable		
		When this bit is enabled, if WALL if		
		pulled out, working mode will be		
		switched from S2 to S1. The wakup		
		voltage of pull out operation is		
		PMU_SYS_CTL0[2:1]		
		VBUS pull out wakeup flag in S2 mode		
1	USB_S2WK_FLAG	1:VBUS pull out wakeup in S2	R	0
		0:No VBUS pull out wakeup in S2	/	
		WALL pull out wakeup flag in S2 mode		
0	WALL_S2WK_FLAG	1:WALL pull out wakeup in S2	R	0
		0:No WALL pull out wakeup in S2		

7.4.5 PMU_SYS_CTL4

PMU_SYS_CTL4 Register (RTCVDD) (default 0x0080)

Offset = 0x04

Bit(s)	Name	Description	Access	Reset
15:0	1	Reserved	1	-

7.4.6 PMU_SYS_CTL5

PMU_SYS_CTL5 Register (RTCVDD) (default 0x0180)

Offset = 0x05

Bit(s)	Name	Description	Access	Reset
		Overvoltage turnoff enable bit		
1.5	OVSD EN	0: 7V hardware turn off enable	RW	0
15	OVSD_EN	1: 7V hardware turn off disable	KW	0 - 0 1
		Note: Only for $CHIP_VER(0xDC)=0x1$)		
14:11	_	Reserved	-	-
		ONOFF long press for 8sec restart selection		
10	ONOFF_8S_SEL	0: reset after long press, then restart	RW	0
10		1: reset after long press, then shut down and		
		enter S4		
		REMCON wakeup detection enable		
9	REMCON_DECT_EN	0: Disable	RW	0
		1: Enable		
		VBUS wakeup detect enable		
8	VBUSWKDTEN	0: Disable	RW	1
		1: Enable		
7	WALLWKDTEN	WALL wakeup detect enable	RW	1

Copyright[©] 2014-2018 Actions (Zhuhai) Technology Co., Ltd. All rights reserved.

		0: Disable		
		1: Enable		
		IBIAS		
		00:lower		
6:5	IBIAS	01:low	RW	0x0
		10:high		
		11:higher		
4:0	-	Reserved	-	-

7.4.7 PMU_BAT_CTL0

PMU_BAT_CTL0 Register (RTCVDD) (default 0x5680)

Offset = 0x0A

Bit(s)	Name	Description	Access	Reset
15:14	BAT_UV_VOL	BAT Undervoltage interrupt voltage setting 00:3.1V 01:3.3V 10:3.4V 11:3.5V	RW	01
13:12	BAT_OV_VOL	BAT overvoltage interrupt voltage setting 00:4.3V 01:4.4V 10:4.5V 11:4.8V	RW	01
11:8	BAT_OC_SET	BAT overcurrent interrupt current setting 0000:200mA 0001:250mA 0010:300mA 0010:300mA 0010:350mA 0100:400mA 0101:450mA 0110:500mA 0110:500mA 1000:600mA 1001:650mA 1010:700mA 1011:750mA 1110:800mA 1111:950mA 1100:800mA 1110:900mA 1110:900mA 1111:950mA	RW	0110

		debounce time is 1ms.		
		BAT overcurrent shutoff current setting 00:600mA		
7:6	BAT_OC_SHUTO	01:800mA	RW	10
7.0	FF_SET	10:1000mA	KW	10
		11:1200mA		
		Overcurrent signal debounce is 1ms		
5:0	-	Reserved	-	-

7.4.8 PMU_BAT_CTL1

PMU_BAT_CTL1 Register (RTCVDD) (default 0xFC00)

Offset = 0x0B

Bit(s)	Name	Description	Access	Reset
		BAT overcurrent detection enable		
15	BAT_OC_EN	0:disable	RW	1
		1:enable		
		BAT overvoltage detection enable		
14	BAT_OV_EN	0:disable	RW	1
		1:enable		
		BAT undervoltage detection enable		
13	BAT_UV_EN	0:disable	RW	1
		1:enable		
		BAT overcurrent interrupt enable		
12	BAT_OC_INT_EN	0:disable	RW	1
		1:enable		
	Y	BAT overvoltage interrupt enable		
11	BAT_OV_INT_EN	0:disable	RW	1
		1:enable		
		BAT undervoltage interrupt enable		
10	BAT_UV_INT_EN	0:disable	RW	1
		1:enable		
	7	BAT overcurrent cutoff enable		
9	BAT_OC_SHUTOFF_EN	0:disable	RW	0
		1:enable		
8:0	-	Reserved	-	-

7.4.9 PMU_VBUS_CTL0

PMU_VBUS_CTL0 Register (RTCVDD) (default 0xA680)

Offset = 0x0C

Bit(s) Name	Description	Access Reset
-------------	-------------	--------------

11:5.8V For CHIP_VER(0xDC)=0x1: 00:5.5V 01:5.8V 10:6.3V 11:6.8V VBUS overcurrent interrupt current setting 0000:100mA 0001:500mA 0010:600mA 0011:700mA 0100:800mA 0100:800mA 0101:900mA)x2
setting 0000:100mA 0001:500mA 0010:600mA 0011:700mA 0100:800mA 0101:900mA RW 0101	
Others: reserved The current under detection is the current flowing from VBUS to SYSPWR through the diode, the overcurrent signal debounce time is 1ms	0110
VBUS overcurrent shutoff current setting 00:600mA 01:800mA	0

7.4.10 PMU_VBUS_CTL1

PMU_VBUS_CTL1 Register (RTCVDD) (default 0xFC00)

Offset = 0x0D

Bit(s)	Name	Description	Access	Reset
		VBUS overcurrent detection enable		
15	VBUS_OC_EN	0:disable	RW	1
		1:enable		
		VBUS overvoltage detection enable		
14	VBUS_OV_EN	0:disable	RW	1
		1:enable	. 0	
		VBUS undervoltage detection enable	A	7
13	VBUS_UV_EN	0:disable	RW	1
		1:enable		
		VBUS overcurrent interrupt enable	7	
12	VBUS_OC_INT_EN	0:disable	RW	0
		1:enable		
		VBUS overvoltage interrupt enable		
11	VBUS_OV_INT_EN	0:disable	RW	0
		1:enable		
		VBUS undervoltage interrupt enable		
10	VBUS_UV_INT_EN	0:disable	RW	0
		1:enable		
	VBUS_OC_SHUTOF	VBUS overcurrent shutoff enable		
9	F EN	0:disable	RW	0
	I'_EN	1:enable		
		VBUS plug in/pull out interrupt enable		
	VBUS_DETECT_INT	0:disable		
8	_EN	1:enable	RW	0
	_111	The relative interrupt voltage is decided by		
		PMU_SYS_PENDING[6:5]		
7:0	- (Reserved	-	-

7.4.11 PMU_WALL_CTL0

PMU_WALL_CTL0 Register (RTCVDD) (default 0xE680)

Offset = 0x0E

Bit(s)	Name	Description	Access	Reset
		WALL undervoltage interrupt voltage setting		
15:14	WALL_UV_VOL	00:3.8V	RW	0x3
13.14	WALL_UV_VOL	01:4.0V		UAS
		10:4.3V		

		11:4.5V		
		WALL overvoltage interrupt voltage setting		
		For CHIP_VER($0xDC$)= $0x0:00:5.3V$		
		01:5.5V		
		10:5.6V		
10.10	WALL ON VOL	11:5.8V	DW	0.2
13:12	WALL_OV_VOL	For $CHIP_VER(0xDC)=0x1$:	RW	0x2
		00:5.5V		
		01:5.8V		
		10:6.3V	A	
		11:6.8V		
		WALL overcurrent interrupt current setting	. 67	N'
		0000:200mA	1	
		0001:250mA	7	
		0010:300mA		
		0011:350mA		
		0100:400mA		
		0101:450mA		
		0110:500mA		
		0111:550mA		
11:8	WALL_OC_SET	1000:600mA	RW	0x6
11.0	WALL_OC_SET	1001:650mA	ICVV	OXO
		1010:700mA		
		1011:750mA		
		1100:800mA		
		1101:850mA		
		1110:900mA		
	A	1111:950mA		
		The current under detection is flowing from WALL		
	, \	to SYSPWR, through the diode, the overcurrent		
		signal debounce time is 1ms		
		WALL overcurrent shutoff current setting		
		00:600mA		
7:6	WALL_OC_SHU	01:800mA	RW	0x2
Y	TOFF_SET	10:1000mA		
,		11:1200mA		
		Overcurrent signal debounce time is 1ms		
5:0	-	Reserved	-	-

7.4.12 PMU_WALL_CTL1

PMU_WALL_CTL1 Register (RTCVDD) (default 0xFC00) Offset = 0x0F

Bit(s)	Name	Description	Access	Reset
		WALL overcurrent detection enable		
15	WALL_OC_EN	0:disable	RW	1
		1:enable		
		WALL overvoltage detection enable		
14	WALL_OV_EN	0:disable	RW	1
		1:enable		
		WALL undervoltage detection enable		
13	WALL_UV_EN	0:disable	RW	1
		1:enable		
		WALL overcurrent interrupt enable		
12	WALL_OC_INT_EN	0:disable	RW	1
		1:enable		
		WALL overvoltage interrupt enable		
11	WALL_OV_INT_EN	0:disable	RW	1
		1:enable		
		WALL undervoltage interrupt enable		
10	WALL_UV_INT_EN	0:disable	RW	1
		1:enable		
		WALL overcurrent shutoff enable		
9	WALL_OC_SHUTOFF_EN	0:disable	RW	0
		1:enable		
		WALL plug in/pull out interrupt enable		
		0:disable		
8	WALL_DETECT_INT_EN	1:enable	RW	0
	Ċ	The interrupt voltage is decided by		
		PMU_SYS_PENDING[4:3]		
7:0	-	Reserved	-	-

7.4.13 PMU_SYS_PENDING

PMU_SYS_PENDING Register (RTCVDD) (default 0x0000)

Offset = 0x10

Bit(s)	Name	Description	Access	Reset
		BAT overvoltage flag		
15	BAT_OV_STATUS	0:BAT is not overvoltage	R	0x0
		1:BAT is overvoltage		
		BAT undervoltage state flag		
14	BAT_UV_STATUS	0:BAT is not undervoltage	R	0x0
		1:BAT is undervoltage		
		BAT overcurrent state flag		
13	BAT_OC_STATUS	0:BAT is not overcurrent	R	0x0
		1:BAT is overcurrent		

Copyright[©] 2014-2018 Actions (Zhuhai) Technology Co., Ltd. All rights reserved.

		VDIIC overveltage state flee		
12	VDIIC OV CTATIC	VBUS overvoltage state flag 0:BAT is not overvoltage	R	0x0
12	VBUS_OV_STATUS		K	UXU
		1:BAT is overvoltage		
1.1	ADDIG THE CONTROL	VBUS undervoltage state flag	D	0.0
11	VBUS_UV_STATUS	0:BAT is not undervoltage	R	0x0
		1:BAT is undervoltage		
		VBUS overcurrent state flag		
10	VBUS_OC_STATUS	0:BAT is not overcurrent	R	0x0
		1:BAT is overcurrent		
		WALL overvoltage state flag		
9	WALL_OV_STATUS	0:BAT is not overvoltage	R	0x0
		1:BAT is overvoltage	• 6/	7
		WALL undervoltage state flag		
8	WALL_UV_STATUS	0:BAT is not undervoltage	R	0x0
		1:BAT is undervoltage		
		WALL overcurrent state flag		
7	WALL_OC_STATUS	0:BAT is not overcurrent	R	0x0
		1:BAT is overcurrent	er	
		VBUS plug in (VBUS ADC voltage higher		
	ADDIC DI DD	than 3.2V) pending	D	0x0
6	VBUS_IN_PD	0:VBUS is not plugged in	R	
		1: VBUS is plugged in		
		VBUS pull out (VBUS ADC voltage lower		
_	AND AND DE	than 3.0V) pending	_	0 0
5	VBUS_OUT_PD	0:VBUS is not pulled out	R	0x0
		1: VBUS is pulled out		
		WALL is plugged in (WALL ADC voltage		
		higher than 3.2V) pending		
4	WALL_IN_PD	0:WALL is not plugged in	R	0x0
	', U	1: WALL is plugged in		
	X	WALL pull out (WALL ADC voltage lower		
		than 3.0V) pending		
3	WALL_OUT_PD	0:WALL is not pulled out	R	0x0
		1: VBUS is pulled out		
2:1	, -	Reserved	-	-
		Status flag clear bit		
		Writing 1 to this bit will clear		0x0
0	STATUS_CLEAR1	PMU_SYS_PENDING[15:3], then this bit	RW	
		will turn to 0 automatically		
<u> </u>		win turn to o automatically		

7.4.14 PMU_DC1_CTL0

PMU_DC1_CTL0 Register (RTCVDD) (default 0x8628)

Offset = 0x11

Bit(s)	Name	Description	Access	Reset
		DC-DC OSC frequency setting		
		000~011: slower		
15:13	FSL	100:1.60MHz	RW	0x4
		101~111: higher		
12	-	Reserved	-	-
		DC-DC1(VDD) Voltage setting		
		00000:0.700V	A	
		00001:0.725V		
			. 67	
11.7	DG1 HOI	01100:1.00V	DIT	0
11:7	DC1_VOL		RW	0xc
		11100:1.40V		
		Others:reserved		
		$DC-DC1_VOLTAGE = 0.7V+$		
		DC-DC1_VOL*25mV		
		DC1 modulation mode		
6	DC1_MOD	0: PFM mode	RW	0
		1: PWM mode		
		DC-DC1 automatic mode switching enable		
		0:Disable		
5	DC1_MODEN1L	1:Enable	RW	1
		When this bit is 0, DC-DC1 mode is decided by		
		bit[6]		
		DC-DC1 mode switch from PWM to PFM, peak		
		conductance current threshold setting		
4	DC1_AT_CURL		RW	0
	', O	0:smaller		
	X	1:bigger		
		DC-DC1 conductance current detection circuit		
2	DC1 FN C01	enable	DW	1
3	DC1_EN_CSL	0:Disable	RW	1
\	(1:Enable		
	7	DC-DC2 conductor current detecting circuit setting		
		00:small		
2:1	DC1_CS_RL	01:1.30A	RW	0
		10:medium		
		11:High		
		DC-DC1 PFM mode current limit selection		
0	DC1_PFMOCP_THL	0:smaller	RW	0
		1:bigger		

7.4.15 PMU_DC2_CTL0

PMU_DC2_CTL0 Register (RTCVDD) (default 0x088A)

Offset = 0x14

Bit(s)	Name	Description		Access	Reset
		DC-DC2 enable			
15	DC2_EN	0: disable		RW	0
		1: enable			
14:13	-	Reserved		-	-
		DCDC2 (VDDR) Voltage s	setting		
		CHIP_VER(0xDC)	CHIP_VER(0xDC)	. 0	
		=0x1:	=0x0:	A	
		00000:1.00V	00000:1.30V		
		00001:1.05V	00001:1.35V		
		00010:1.10V	00010:1.40V		
		00011:1.15V	00011:1.45V		
		00100:1.20V	00100:1.50V		
		00101:1.25V	00101:1.55V		
		00110:1.30V	00110:1.60V	RW	
10.0		00111:1.35V	00111:1.65V		0.0
12:8	DC2_VOL	01000:1.40V	01000:1.70V		0x8
		01001:1.45V	01001:1.75V		
		01010:1.50V	01010:1.80V		
		01011:1.55V	01011:1.85V		
		01100:1.60V	01100:1.90V		
		01101:1.65V	01101:1.95V		
		01110:1.70V	01110:2.05V		
	. (01111:1.75V	01111:2.15V		
		10000:1.80V	10000:reseved		
		10001:1.85V	10001:reseved		
		Others:1.85v	Others:reseved		
		DC2 phase margin improve	e enable:		
7	DC2_LOOP_EN	0: disable		RW	1
/	DC2_LOOP_EN	1: enable		KW	1
,		Note: only for CHIP_VER	(0xC)=0x1		
		DC-DC2 modulation mode)		
6	DC2_MOD	0: PFM mode		RW	0
		1: PWM mode			
		DC-DC2 auto mode switch	ing circuit enable		
	DC2_MODEN1	0:Disable			
5	L	1:Enable		RW	0
	_	When this bit is 0, DC-DC	C2 mode is determined by		
		bit[6]			

4	DC2_AT_CURL	DC-DC2 PWM mode switch to PFM mode conductor peak current threshold setting 0:Smaller 1:bigger	RW	0
3	DC2_EN_CSL	DC-DC2 conductor current detecting circuit enable 0:Disable 1:Enable	RW	1
2:1	DC2_CS_RL	DC-DC2 conductor current detecting circuit setting 00:small 01:1.25A 10:medium 11:High	RW	1
0	DC2_PFMOCP_ THL	DC-DC2 PFM mode current limiting value selection 0 :Smaller 1 :Bigger	RW	0

7.4.16 PMU_DC3_CTL0

PMU_DC3_CTL0 Register (RTCVDD) (default 0x8B8A)

Offset = 0x17

Bit(s)	Name	Description	Access	Reset
15:11	-	Reserved	-	-
		DC-DC3 output pull-down resister		
12	DC3_PD	1: enable pull-down resister	RW	0
12		0: disable pull-down resister	IXVV	0
	Y	Note: only for CHIP_VER(0xC)=0x1		
	, O y	DC-DC3(VCC) Voltage setting		
		000:2.6V		
		001:2.7V		
		010:2.8V		
11:9	DC3_VOL	011:2.9V	RW	0x5
		100:3.0V		
\	,	101:3.1V		
		110:3.2V		
		111:3.3V		
		Working circuit selection		
8	EN_SETVCCL	0: according to bit[7]	RW	1
		1: LDO mode		
		DC3VOUT working circuit selection		
7	SETVCCL	0:LDO mode	RW	1
		1:DC-DC mode		
6	DC3_MOD	DC-DC3 modulation mode	RW	0

		0: PFM mode		
		1: PWM mode		
		DC-DC3 auto mode switch circuit enable		
		0:Disable		
5	DC3_MODEN1L	1:Enable	RW	0
		When this bit is 0, DC-DC3 mode is decided		
		by bit[6]		
		DC-DC3 mode switch to PFM mode		
4	DC3_AT_CURL	conductor peak current threshold setting	RW	0
4	DC3_AI_CUKL	0 :Smaller	KW	U
		1 :Bigger		
		DC-DC3 conductor current detection circuit	. 60) '
3	DC3_EN_CSL	enable	RW	1
3		0:Disable	KW	1
		1:Enable		
		DC-DC3 conductor current detecting circuit		
		setting		
2:1	DC3_CS_RL	00:small	RW	1
2.1	DC3_CS_KL	01:1.33A	IX VV	1
		10:medium		
		11:High		
		DC3PFM mode current limit value selection		
0	DC3_PFMOCP_THL	0 :Smaller	RW	0
		1 :Bigger		

7.4.17 PMU_LDO1_CTL

 $PMU_LDO1_CTL\ Register\ (RTCVDD)\ (default\ 0xA000)$

Offset = 0x1E

Bit(s)	Name	Description	Access	Reset
		LDO1(AVCC1) Voltage setting		
		000:2.6V		
	7	001:2.7V		
\	,	010:2.8V		
15:13	LDO1_VOL	011:2.9V	RW	0x5
		100:3.0V		
		101:3.1V		
		110:3.2V		
		111:3.3V		
		Soft startup select		
12	LDO1_SOFT_STARTUP	0: fast power on	RW	0
		1: slow power on		
11	LDO1_BIAS	Bias select	RW	0

		0: small bias current		
		1: big bias current		
10:0	-	Reserved	-	-

7.4.18 PMU_LDO2_CTL

PMU_LDO2_CTL Register (RTCVDD) (default 0xA000)

Offset = 0x1F

Bit(s)	Name	Description	Access	Reset
		LDO2(AVCC2) Voltage setting		
		000:2.6V	(
		001:2.7V	X	
		010:2.8V		
15:13	LDO2_VOL	011:2.9V	RW	0x5
		100:3.0V		
		101:3.1V		
		110:3.2V		
		111:3.3V		
		Soft startup select		
12	LDO2_SOFT_STARTUP	0: fast power on	RW	0
		1: slow power on		
		Bias select		
11	LDO2_BIAS	0: small bias current	RW	0
		1: big bias current		
10:0	-	Reserved	-	-

7.4.19 PMU_LDO3_CTL

PMU_LDO3_CTL Register (RTCVDD) (default 0x6000)

Offset = 0x20

Bit(s)	Name	Description	Access	Reset
		LDO3(VDD_18) Voltage setting		
) -	,	000:1.5V		
		001:1.6V		
15:13	LDO3 VOL	010:1.7V	RW	0x3
13.13	LDO3_VOL	011:1.8V	KW	
		100:1.9V		
		101:2.0V		
		Others:Reserved		
		Soft startup select		
12	LDO3_SOFT_STARTUP	0: fast power on	RW	0
		1: slow power on		

11	LDO3_BIAS	Bias select 0: small bias current 1: big bias current	RW	0
10:0	-	Reserved	-	-

7.4.20 PMU_LDO5_CTL

PMU_LDO5_CTL Register (RTCVDD) (default 0x4000)

Offset = 0x22

Bit(s)	Name	Description	Access	Reset
		LDO5 Voltage setting	• , • /	
		000:2.6V	X	
		001:2.7V		
		010:2.8V		
15:13	LDO5_VOL	011:2.9V	RW	0x2
		100:3.0V		
		101:3.1V		
		110:3.2V		
		111:3.3V		
		Soft startup select		
12	LDO5_SOFT_STARTUP	0: fast power on	RW	0
		1: slow power on		
		Bias select		
11	LDO5_BIAS	0: small bias current	RW	0
		1: big bias current		
10:1	-	Reserved	-	-
		LDO5 enable bit		
0	LDO5_EN	0:disable	RW	0
		1:enable		

7.4.21 **PMU_LDO6_CTL**

PMU_LDO6_CTL Register (RTCVDD) (default 0xA000)

Offset = 0x23

Bit(s)	Name	Description	Access	Reset
		LDO6(AVDD1.2) Voltage setting		
		00000:0.700V		
		00001:0.725V		
15:11	LDO6_VOL		RW	0x14
		01100:1.00V		
		10100:1.2V		

Copyright[©] 2014-2018 Actions (Zhuhai) Technology Co., Ltd. All rights reserved.

		11100:1.40V		
		Others:1.40V		
		LDO6_VOLTAGE = 0.7V+ LDO6_VOL		
		* 25mV		
		Soft startup select		
10	LDO6_SOFT_STARTUP	0: fast power on	RW	0
		1: slow power on		
		Bias select		
9	LDO6_BIAS	0: small bias current	RW	0
		1: big bias current	/	
8:0	-	Reserved	-	-

7.4.22 PMU_LDO7_CTL

PMU_LDO7_CTL Register (RTCVDD) (default 0x6000)

Offset = 0x24

Bit(s)	Name	Description	Access	Reset
		LDO7(Analog1.8) Voltage setting		
		000:1.5V		
		001:1.6V		
15.12	LDOZ VOL	010:1.7V	DW	02
15:13	LDO7_VOL	011:1.8V	RW	0x3
		100:1.9V		
		101:2.0V		
		Others:2.0V		
		Soft startup select		
12	LDO7_SOFT_STARTUP	0: fast power on	RW	0
	Y	1: slow power on		
		Bias select		
11	LDO7_bias	0: small bias current	RW	0
		1: big bias current		
10:1	-	Reserved	-	-
	7	LDO7 enable bit		
0	LDO7_EN	0:disable	RW	0
		1:enable		

7.4.23 PMU_LDO11_CTL

PMU_LDO12_CTL Register (RTCVDD) (default 0xB000)

Offset = 0x28

Bit(s)	Name	Description	Access	Reset
15:13	LDO11_VOL	LDO11(SVCC) Voltage setting	RW	0x5

		000:2.6V		
		001:2.7V		
		010:2.8V		
		011:2.9V		
		100:3.0V		
		101:3.1V		
		110:3.2V		
		111:3.3V		
		SVCC low voltage protection enable		
12	SVCC_LOW_EN	(Analog use only)	RW	1
12	SVCC_LOW_EN	0:Disable	KW	1
		1:Enable	• 6/	"D'
11:0	-	Reserved		-

7.4.24 PMU_SWITCH_CTL

PMU_SWITCH_CTL Register (RTCVDD) (default 0x0000) Offset = 0x29

Bit(s)	Name	Description	Access	Reset
15	SWITCH1_EN	SWITCH1_EN	RW	0
		0:enable		
		1:disable		
14:6	1	Reserved	-	-
5	SWITCH1_MODE	SWITCH1 mode selection	RW	0
		0:LDO		
		1:SWITCH		
4:3	SWITCH1_LDO_VOL	Voltage setting when SWITCH1 used as	RW	0
		LDO		
		00:3.0V		
		01:3.1V		
		10:3.2V		
		11:3.3V		
2	-/ /	Reserved	-	-
1	SWITCH1_DISCHARGE_EN	SWITCH1 discharging enable control	RW	0
		0:Disable		
		1:Enable		
		Bit[1] and bit[2] cannot be 1 at the same		
		time; bit[1] and bit[15] cannot be 1 at the		
		same time		
0	SWITCH1_LDO_BIAS	BIAS current select:	RW	0
		0: small bias current		
		1: big bias current		

7.4.25 PMU_OV_CTL0

PMU_OV_CTL0 Register (RTCVDD) (default 0x5555)

Offset = 0x2A

Bit(s)	Name	Description	Access	Reset
15	-	Reserved	-	-
		DC-DC1 output overvoltage setting		
		0:+10% DC1OUT		
		1:+20% DC1OUT		
14	DC-DC1_OV_SET	If DC1OUT is detected higher than settings	RW	1
		for 1ms, and the relative enable bit is 1,		
		DC-DC1 overvoltage interrupt will be sent	A 0	
		out		
13	-	Reserved		-
		DC-DC2 output overvoltage setting		
		0:+10% DC2OUT		
		1:+20% DC2OUT		
12	DC-DC2_OV_SET	If DC2OUT is detected higher than settings	RW	1
		for 1ms, and the relative enable bit is 1,		
		DC-DC2 overvoltage interrupt will be sent		
		out		
11	-	Reserved	-	-
		DC-DC3 output overvoltage setting		
		0:+10% DC3OUT		
		1:+20% DC3OUT		
10	DC-DC3_OV_SET	If DC3OUT is detected higher than settings	RW	1
		for 1ms, and the relative enable bit is 1,		
		DC-DC3 overvoltage interrupt will be sent		
		out		
9:8	-	Reserved	_	-
		LDO1 output overvoltage setting		
		00:+7% LDO1OUT		
		01:+11% LDO1OUT		
		10:+15% LDO1OUT		
7:6	LDO1_OV_SET	11:+20% LDO1OUT	RW	1
		If LDO1OUT is detected higher than		
		settings for 1ms, and the relative enable bit		
		is 1, LDO1 overvoltage interrupt will be sent		
		out		
		LDO2 output overvoltage setting		
		00:+5% LDO2OUT		
5:4	LDO2_OV_SET	01:+10% LDO2OUT	RW	1
		10:+15% LDO2OUT		
		11:+20% LDO2OUT		

		If LDO2OUT is detected higher than settings for 1ms, and the relative enable bit is 1, LDO2 overvoltage interrupt will be sent		
		out		
3:2	LDO3_OV_SET	LDO3 output overvoltage setting 00:5% LDO3OUT 01:10% LDO3OUT 10:15% LDO3OUT 11:20% LDO3OUT If LDO3OUT is detected higher than settings for 1ms, and the relative enable bit is 1, LDO3 overvoltage interrupt will be sent out	RW	1
1:0	-	Reserved	-J ⁷	-

7.4.26 PMU_OV_CTL1

PMU_OV_CTL1 Register (RTCVDD) (default 0x5550)

Offset = 0x2B

Bit(s)	Name	Description	Access	Reset
15:14	LDO5_OV_SET	LDO5 output overvoltage voltage setting 00:5% LDO5OUT 01:10% LDO5OUT 10:15% LDO5OUT 11:20% LDO5OUT If LDO5OUT voltage is higher than its settings for 1ms, and the relative enable bit is 1, LDO5 overvoltage interrupt will be sent.	RW	1
13:12	LDO6_OV_SET	LDO6 output overvoltage voltage setting 00:5% LDO6OUT 01:10% LDO6OUT 10:15% LDO6OUT 11:20% LDO6OUT If LDO6OUT voltage is higher than its settings for 1ms, and the relative enable bit is 1, LDO6 overvoltage interrupt will be sent.	RW	1
11:10	LDO7_OV_SET	LDO7 output overvoltage voltage setting 00:5% LDO7OUT 01:10% LDO7OUT 10:15% LDO7OUT 11:20% LDO7OUT If LDO7OUT voltage is higher than its settings for 1ms, and the relative enable bit is 1, LDO7	RW	1

		overvoltage interrupt will be sent.		
9:0	-	Reserved	-	-

7.4.27 PMU_OV_STATUS

PMU_OV_STATUS Register (RTCVDD) (default 0x0000)

Offset = 0x2C

Bit(s)	Name	Description	Access	Reset
	DO DOL OV CTATU	DC-DC1 output overvoltage flag	, and the second se	
15	DC-DC1_OV_STATU	0: DC-DC1 is not overvoltage at present	R	0
	S	1: DC-DC1 is overvoltage at present	• 6	9'
	DC DC2 OV CTATIL	DC-DC2 output overvoltage flag	X	
14	DC-DC2_OV_STATU	0: DC-DC2 is not overvoltage at present	R	0
	S	1: DC-DC2 is overvoltage at present		
	DC DC2 OV CTATU	DC-DC3 output overvoltage flag	Y	
13	DC-DC3_OV_STATU	0: DC-DC3 is not overvoltage at present	R	0
	S	1: DC-DC3 is overvoltage at present		
12	-	Reserved	-	-
		LDO1 output overvoltage flag		
11	LDO1_OV_STATUS	0: LDO1 not overvoltage at present	R	0
		1: LDO1 is overvoltage at present		
		LDO2 output overvoltage flag		
10	LDO2_OV_STATUS	0: LDO2 not overvoltage at present	R	0
		1: LDO2 is overvoltage at present		
		LDO3 output overvoltage flag		
9	LDO3_OV_STATUS	0: LDO3 not overvoltage at present	R	0
		1: LDO3 is overvoltage at present		
8	- , , , , , , , , , , , , , , , , , , ,	Reserved	-	-
		LDO5 output overvoltage flag		
7	LDO5_OV_STATUS	0: LDO5 not overvoltage at present	R	0
		1: LDO5 is overvoltage at present		
		LDO6 output overvoltage flag		
6	LDO6_OV_STATUS	0: LDO6 not overvoltage at present	R	0
\		1: LDO6 is overvoltage at present		
		LDO7 output overvoltage flag		
5	LDO7_OV_STATUS	0: LDO7 not overvoltage at present	R	0
		1: LDO7 is overvoltage at present		
4:1	-	Reserved	-	-
		Flag clear bit:		
		When writing 1 to this bit will clear	DW	0
0	STATUS_CLEAR2	bit[15:4], then this bit turn to 0	RW	0
		automatically		

7.4.28 PMU_OV_EN

PMU_OV_EN Register (RTCVDD) (default 0xFFFC)

Offset = 0x2D

Bit(s)	Name	Description	Access	Reset
		DC-DC1 output overvoltage detection enable		
15	DC-DC1_OV_EN	0:Disable	RW	1
		1:Enable		
		DC-DC2 output overvoltage detection enable		
14	DC-DC2_OV_EN	0:Disable	RW	1
		1:Enable		
		DC-DC3 output overvoltage detection enable	A	
13	DC-DC3_OV_EN	0:Disable	RW	1
		1:Enable		
12	-	Reserved	- 7	-
		LDO1 output overvoltage detection enable		
11	LDO1_OV_EN	0:Disable	RW	1
		1:Enable		
		LDO2 output overvoltage detection enable		
10	LDO2_OV_EN	0:Disable	RW	1
		1:Enable		
		LDO3 output overvoltage detection enable		
9	LDO3_OV_EN	0:Disable	RW	1
		1:Enable		
8	-	Reserved	-	-
		LDO5 output overvoltage detection enable		
7	LDO5_OV_EN	0:Disable	RW	1
		1:Enable		
	• ()	LDO6 output overvoltage detection enable		
6	LDO6_OV_EN	0:Disable	RW	1
		1:Enable		
		LDO7 output overvoltage detection enable		
5	LDO7_OV_EN	0:Disable	RW	1
	7	1:Enable		
4:0	-	Reserved	-	-

7.4.29 PMU_OV_INT_EN

PMU_OV_INT_EN Register (RTCVDD) (default 0xFFFC)

Offset = 0x2E

Bit(s)	Name	Description		Access	Reset		
15	DC-DC1_OV_INT_E	DC-DC1 or	utput	overvoltage	interrupt	RW	1

	N	enable		
		0:Disable		
		1:Enable		
		DC-DC2 output overvoltage interrupt		
l.,	DC-DC2_OV_INT_E	enable	D	
14	N	0:Disable	RW	1
		1:Enable		
		DC-DC3 output overvoltage interrupt		
1.2	DC-DC3_OV_INT_E	enable	DW	1
13	N	0:Disable	RW	1
		1:Enable		
12	-	Reserved	- • 6	-) '
		LDO1 output overvoltage interrupt enable	K	
11	LDO1_OV_INT_EN	0:Disable	RW	1
		1:Enable		
		LDO2 output overvoltage interrupt enable	Y	
10	LDO2_OV_INT_EN	0:Disable	RW	1
		1:Enable		
		LDO3 output overvoltage interrupt enable		
9	LDO3_OV_INT_EN	0:Disable	RW	1
		1:Enable		
8	-	Reserved	-	-
		LDO5 output overvoltage interrupt enable		
7	LDO5_OV_INT_EN	0:Disable	RW	1
		1:Enable		
		LDO6 output overvoltage interrupt enable		
6	LDO6_O_INT V_EN	0:Disable	RW	1
		1:Enable		
		LDO7 output overvoltage interrupt enable		
5	LDO7_OV_INT_EN	0:Disable	RW	1
	X	1:Enable		
4:0	- (Reserved	-	-

7.4.30 PMU_OC_CTL

PMU_OV_CTL Register (RTCVDD) (default 0x0000)

Offset = 0x2F

Bit(s)	Name	Description	Access	Reset
		LDO1 output overcurrent current setting		
		0:800mA		
15	LDO1_OC_SET	1:900mA	RW	0
		If LDO1 is overcurrent, it will enter standby		
		mode.		

-			1	,
		LDO2 output overcurrent current setting 0:400mA		
14	LDO2_OC_SET	1:500mA	RW	0
		If LDO2 is overcurrent, it will enter standby		
		mode.		
		LDO3 output overcurrent current setting		
		0:500mA		
13	LDO3_OC_SET	1:600mA	RW	0
		If LDO3 is overcurrent, it will enter standby		
		mode.		
12	_	Reserved	-	-
		LDO5 output overcurrent current setting	• 6	N /
		0:300mA		
		1:400mA		
		If LDO5OUT output current exceeds the		
		settings, and the relative interrupt is enabled,		
	LDOS OG GET	then overcurrent interrupt will be sent and	DIV	
11	LDO5_OC_SET	LDO5 will be shut down. When the software	RW	0
		responds the interrupt, its interrupt flag bit		
		should be cleared to 0. Disable then enable the		
		LDO, the LDO will be turned on, or disable the		
		overcurrent detection enable bit, then turn on		
		the LDO.		
		LDO6 output overcurrent current setting		
		0:400mA		
10	LDO6_OC_SET	1:500Ma	RW	0
		If LDO6 is overcurrent, it will enter standby		
		mode.		
		LDO7 output overcurrent current setting		
		0:400mA		
		1:500mA		
		If LDO7OUT output current exceeds the		
		settings, and the relative interrupt is enabled,		
9	LDO7_OC_SET	then overcurrent interrupt will be sent and	RW	0
ľ		LDO7 will be shut down. When the software	10,1	
,		responds the interrupt, its interrupt flag bit		
		should be cleared to 0. Disable then enable the		
		LDO, the LDO will be turned on, or disable the		
		overcurrent detection enable bit, then turn on		
		the LDO.		
8:0	-	Reserved	-	-

7.4.31 PMU_OC_STATUS

PMU_OC_STATUS Register (RTCVDD) (default 0x0000)

Offset = 0x30

Bit(s)	Name	Description	Access	Reset
		LDO1 output overcurrent flag		
	I DO1 OC STATII	0:LDO1 is not overcurrent at present		
15	LDO1_OC_STATU	1:LDO1 is overcurrent at present	R	0
	S	When LDO is overcurrent, this bit will be 1,		
		and the LDO will be shutdown by HW	A	
		LDO2 output overcurrent current flag		
	I DO2 OC STATU	0:LDO2 is not overcurrent at present		
14	LDO2_OC_STATU	1:LDO2 is overcurrent at present	R	0
	3	When LDO is overcurrent, this bit will be 1,		
		and the LDO will be shutdown by HW		
		LDO3 output overcurrent current flag	7	
	LDO3_OC_STATU	0:LDO3 is not overcurrent at present		
13	S	1:LDO3 is overcurrent at present	R	0
	3	When LDO is overcurrent, this bit will be 1,		
		and the LDO will be shutdown by HW		
12	-	Reserved	-	-
	LDO5_OC_STATU S	LDO5 output overcurrent current flag		
		0:LDO5 is not overcurrent at present		
11		1:LDO5 is overcurrent at present	R	0
		When LDO is overcurrent, this bit will be 1,		
		and the LDO will be shutdown by HW		
		LDO6 output overcurrent current flag		
	I DOG OC STATU	0:LDO6 is not overcurrent at present		
10	LDO6_OC_STATU S	1:LDO6 is overcurrent at present	R	0
		When LDO is overcurrent, this bit will be 1,		
		and the LDO will be shutdown by HW		
		LDO7 output overcurrent current flag		
	LDO7_OC_STATU	0:LDO7 is not overcurrent at present		
9	S	1:LDO7 is overcurrent at present	R	0
>	S	When LDO is overcurrent, this bit will be 1,		
		and the LDO will be shutdown by HW		
8:1	-	Reserved	-	-
		Flag clear bit:		
0	STATUS_CLEAR3	When writing 1 to this bit will clear	RW	0
0	STATUS_CLEARS	bit[15:2], then this bit turn to 0	17.44	U
		automatically		

7.4.32 PMU_OC_EN

PMU_OC_EN Register (RTCVDD) (default 0xFFC0)

Offset = 0x31

Bit(s)	Name	Description	Access	Reset
		LDO1 output overcurrent detection enable		
15	LDO1_OC_EN	0:Disable	RW	1
		1:Enable		
		LDO2 output overcurrent detection enable		
14	LDO2_OC_EN	0:Disable	RW	1
		1:Enable		
		LDO3 output overcurrent detection enable		
13	LDO3_OC_EN	0:Disable	RW	1
		1:Enable		
		LDO4 output overcurrent detection enable		
12	Reserved	0:Disable	RW	1
		1:Enable		
		LDO5 output overcurrent detection enable		
11	LDO5_OC_EN	0:Disable	RW	1
		1:Enable		
		LDO6 output overcurrent detection enable		
10	LDO6_OC_EN	0:Disable	RW	1
		1:Enable		
		LDO7 output overcurrent detection enable		
9	LDO7_OC_EN	0:Disable	RW	1
		1:Enable		
8:0	-	Reserved	-	-

7.4.33 PMU_OC_INT_EN

PMU_OC_INT_EN Register (RTCVDD) (default 0x1bc0)

Offset = 0x32

Bit(s)	Name	Description	Access	Reset
15:12	-	Reserved	1	-
		LDO5 output overcurrent interrupt enable		
11	LDO5_OC_INT_EN	0:Disable	RW	1
		1:Enable		
10	-	Reserved	-	-
		LDO7 output overcurrent interrupt enable		
9	LDO7_OC_INT_EN	0:Disable	RW	1
		1:Enable		
8:0	-	Reserved	-	-

7.4.34 PMU_UV_CTL0

PMU_UV_CTL0 Register (RTCVDD) (default 0x5555)

Offset = 0x33

Bit(s)	Name	Description	Access	Reset
15	-	Reserved	-	-
14	DC-DC1_UV_SET	DC-DC1 output undervoltage voltage setting 0:10% DC1OUT 1:20% DC1OUT If DC1OUT voltage is lower than setting for 1ms, and the relative enable bit is 1, then DC-DC1 undervoltage interrupt will be sent.	RW	1
13	-	Reserved	-	-
12	DC-DC2_UV_SET	DC-DC2 output undervoltage voltage setting 0:10% DC2OUT 1:20% DC2OUT If DC2OUT voltage is lower than setting for 1ms, and the relative enable bit is 1, then DC-DC2 undervoltage interrupt will be sent.	RW	1
11	-	Reserved	-	-
10	DC-DC3_UV_SET	DC-DC3 output undervoltage voltage setting 0:10% DC3OUT 1:20% DC3OUT If DC3OUT voltage is lower than setting for 1ms, and the relative enable bit is 1, then DC-DC3 undervoltage interrupt will be sent.	RW	1
9:8	-	Reserved	-	-
7:6	LDO1_UV_SET	LDO1 output undervoltage voltage setting 00:5% LDO1OUT 01:10% LDO1OUT 10:15% LDO1OUT 11:20% LDO1OUT If LDO1OUT voltage is lower than setting for 1ms, and the relative enable bit is 1, then LDO1 undervoltage interrupt will be sent.	RW	1
5:4	LDO2_UV_SET	LDO2 output undervoltage voltage setting 00:5% LDO2OUT	RW	1

		01:10% LDO2OUT		
		10:15% LDO2OUT		
		11:20% LDO2OUT		
		If LDO2OUT voltage is lower than setting		
		for 1ms, and the relative enable bit is 1,		
		then LDO2 undervoltage interrupt will be		
		sent.		
		LDO3 output undervoltage voltage setting		
		00:5% LDO3OUT		
		01:10% LDO3OUT		
		10:15% LDO3OUT		
3:2	LDO3_UV_SET	11:20% LDO3OUT	RW	1
		If LDO3OUT voltage is lower than setting	V^{Λ}	
		for 1ms, and the relative enable bit is 1,		
		then LDO3 undervoltage interrupt will be		
		sent.	Y	
1:0	-	Reserved	-	-

7.4.35 PMU_UV_CTL1

PMU_UV_CTL1 Register (RTCVDD) (default 0x5550) Offset = 0x34

Bit(s)	Name	Description	Access	Reset
		LDO5 output undervoltage voltage setting		
		00:5% LDO5OUT		
		01:10% LDO5OUT		
15:14	LDO5_UV_SET	10:15% LDO5OUT	RW	1
13.14	LDO3_UV_SET	11:20% LDO5OUT	KW	1
	'^	If LDO5OUT voltage is lower than setting for		
		1ms, and the relative enable bit is 1, then		
		LDO5 undervoltage interrupt will be sent.		
	LDO6_UV_SET	LDO6 output undervoltage voltage setting	RW	1
		00:5% LDO6OUT		
\ \C		01:10% LDO6OUT		
13:12		10:15% LDO6OUT		
13.12	LDO0_0 v_3E1	11:20% LDO6OUT		1
		If LDO6OUT voltage is lower than setting for		
		1ms, and the relative enable bit is 1, then		
		LDO6 undervoltage interrupt will be sent.		
11:10		LDO7 output undervoltage voltage setting		
	LDO7_UV_SET	00:5% LDO7OUT	RW	1
11.10	LDO/_U v_SEI	01:10% LDO7OUT	17.44	1
		10:15% LDO7OUT		

		11:20% LDO7OUT If LDO7OUT voltage is lower than setting for 1ms, and the relative enable bit is 1, then		
		LDO7 undervoltage interrupt will be sent.		
9:0	-	Reserved	-	-

7.4.36 PMU_UV_STATUS

 $PMU_UV_STATUS\ Register\ (RTCVDD) \quad (default\ 0x0000)$

Offset = 0x35

Bit(s)	Name	Description	Access	Reset
	DC DC1 HV CTATH	DC-DC1 output undervoltage flag	K	
15	DC-DC1_UV_STATU	0:DC-DC1 is not undervoltage at present	R	0
	S	1: DC-DC1 is undervoltage at present		
	DO DOS INI OTATILI	DC-DC2 output undervoltage flag	Y	
14	DC-DC2_UV_STATU	0:DC-DC2 is not undervoltage at present	R	0
	S	1: DC-DC2 is undervoltage at present		
	DO DOS INI OTRATII	DC-DC3 output undervoltage flag		
13	DC-DC3_UV_STATU	0:DC-DC3 is not undervoltage at present	R	0
	S	1: DC-DC3 is undervoltage at present		
12	-	Reserved	-	-
		LDO1 output undervoltage flag		
11	LDO1_UV_STATUS	0:LDO1 is not undervoltage at present	R	0
		1:LDO1 is undervoltage at present		
	LDO2_UV_STATUS	LDO2 output undervoltage flag		
10		0:LDO2 is not undervoltage at present	R	0
		1:LDO2 is undervoltage at present		
	Y	LDO3 output undervoltage flag		
9	LDO3_UV_STATUS	0:LDO3 is not undervoltage at present	R	0
		1:LDO3 is undervoltage at present		
		LDO4 output undervoltage flag		
8	Reserved	0:LDO4 is not undervoltage at present	R	0
	7	1:LDO4 is undervoltage at present		
	·	LDO5 output undervoltage flag		
7	LDO5_UV_STATUS	0:LDO5 is not undervoltage at present	R	0
		1:LDO5 is undervoltage at present		
		LDO6 output undervoltage flag		
6	LDO6_UV_STATUS	0:LDO6 is not undervoltage at present	R	0
		1:LDO6 is undervoltage at present		
		LDO7 output undervoltage flag		
5	LDO7_UV_STATUS	0:LDO7 is not undervoltage at present	R	0
		1:LDO7 is undervoltage at present		
4:1	-	Reserved	-	-

		Flag clear bit:		
0	Status_Clear4	When writing 1 to this bit will clear	RW	0
O	Status_Clear+	bit[15:2], then this bit turn to 0	KW	O
		automatically		

7.4.37 PMU_UV_EN

PMU_UV_EN Register (RTCVDD) (default 0xFFFC)

Offset = 0x36

Bit(s)	Name	Description	Access	Reset
	DC-DC1_UV_E	DC-DC1 output undervoltage detection enable	• 6	
15	N	0:Disable	RW	1
	11	1:Enable		
	DC-DC2_UV_E	DC-DC2 output undervoltage detection enable		
14	N	0:Disable	RW	1
	11	1:Enable		
	DC-DC3_UV_E	DC-DC3 output undervoltage detection enable		
13	N	0:Disable	RW	1
	11	1:Enable		
12	-	Reserved	-	-
		LDO1 output undervoltage detection enable		
11	LDO1_UV_EN	0:Disable	RW	1
		1:Enable		
		LDO2 output undervoltage detection enable		
10	LDO2_UV_EN	0:Disable	RW	1
		1:Enable		
		LDO3 output undervoltage detection enable		
9	LDO3_UV_EN	0:Disable	RW	1
		1:Enable		
8	-	Reserved	-	-
		LDO5 output undervoltage detection enable		
7	LDO5_UV_EN	0:Disable	RW	1
		1:Enable		
\		LDO6 output undervoltage detection enable		
6	LDO6_UV_EN	0:Disable	RW	1
		1:Enable		
		LDO7 output undervoltage detection enable		
5	LDO7_UV_EN	0:Disable	RW	1
		1:Enable		
4:0	-	Reserved	-	-

Copyright[©] 2014-2018 Actions (Zhuhai) Technology Co., Ltd. All rights reserved.

7.4.38 PMU_UV_INT_EN

PMU_UV_INT_EN Register (RTCVDD) (default 0xFFFC)

Offset = 0x37

Bit(s)	Name	Description	Access	Reset
15	DC-DC1_UV_INT _EN	DC-DC1 output undervoltage interrupt enable 0:Disable 1:Enable	RW	1
14	DC-DC2_UV_INT _EN	DC-DC2 output undervoltage interrupt enable 0:Disable 1:Enable	RW	1
13	DC-DC3_UV_INT _EN	DC-DC3 output undervoltage interrupt enable 0:Disable 1:Enable	RW	1
12	-	Reserved		-
11	LDO1_UV_INT_ EN	LDO1 output undervoltage interrupt enable 0:Disable 1:Enable	RW	1
10	LDO2_UV_INT_ EN	LDO2 output undervoltage interrupt enable 0:Disable 1:Enable	RW	1
9	LDO3_UV_INT_ EN	LDO3 output undervoltage interrupt enable 0:Disable 1:Enable	RW	1
8	-	Reserved	-	-
7	LDO5_UV_INT_ EN	LDO5 output undervoltage interrupt enable 0:Disable 1:Enable	RW	1
6	LDO6_UV_INT_ EN	LDO6 output undervoltage interrupt enable 0:Disable 1:Enable	RW	1
5	LDO7_UV_INT_ EN	LDO7 output undervoltage interrupt enable 0:Disable 1:Enable	RW	1
4:0	-	Reserved	-	-

7.4.39 PMU_OT_CTL

PMU_OT_CTL Register (RTCVDD) (default 0x3B00)

Offset = 0x38

Bit(s)	Name	Description	Access	Reset
15	OT_STATUS	IC overtemperature flag (limit is	RW	0

I	I			1
		bit[14:13])		
		0:not overtemperature at present		
		1:overtemperature at present		
		Write 1 clear to 0		
		IC overtemperature interrupt temperature		
		setting		
14.10	OT GET	00:70 ℃	DW	1
14:13	OT_SET	01:90 ℃	RW	1
		10:100 ℃		
		11:110 ℃		
		IC overtemperature interrupt enable		
12	OT_INT_EN	0:disable	RW	1
		1:enable	VA	
		IC overtemperature shut off enable		
11	OT_SHUTOFF_EN	0:disable	RW	1
		1:enable	Y	
		IC overtemperature temperature setting		
		00:100 ℃		
10:9	OT_SHUTOFF_SET	01:120 ℃	RW	1
		10:130 ℃		
		11:140 ℃		
		IC overtemperature detection enable		
8	OT_EN	0:disable	RW	1
		1:enable		
7:0	-	Reserved	-	-
	•		•	

7.4.40 PMU_CHARGER_CTL0

PMU_CHARGER_CTL0 Register (RTCVDD) (default 0x325B)

Offset = 0x39

Bit(s)	Name	Description	Access	Reset
		Enable Charge Circuit		
15	ENCH	1: Enable charge circuit	RW	0
		0: Disable charge circuit		
		Charger stopping timer set enable bit:		
		0: disable	RW	0
14	CHGTIME	1: enable		
		If enable, the charger will stop when the time		
		set by bit[13:12] has arrived.		
		CC/CV TIMER		
13:12	CHARGE_TIME	00 : 4h	RW	0x3
	R1	01 : 6h	IX VV	UXS
		10:8h		

Copyright[®] 2014-2018 Actions (Zhuhai) Technology Co., Ltd. All rights reserved.

		11 : 12h		
		Trickle timer		
11:10		00 :30min		
	CHARGE_TIME	01 :40min	RW	0
11.10	R2	10 :50min	I K VV	U
		11 :60min		
		Enable Trickle charge 0: disable		
9	TRICKLEEN	1: enable	RW	1
		If this bit is 0, there is no Pre-charging phase,	/	
		and battery charging goes to Constant current		
		directly.		
		Bit[0] and this bit are enabled at the same	X	
	CHG FORCE OF	time, every bit[7] time the battery voltage will		
8	CHG_FORCE_OF	be detected, if the voltage exceeds 4.24V,	RW	0
	F	charging process will be forced to stop		
		0:Disable		
		1:Enable		
_	DTSEL	Charging termination detection time selection	D.V.V.	0
7		1:once per 20s	RW	0
		0:once per 12min		
		Set availability of SYSPWR stable loop		
		0:disable		
		1:enable		
6	CHG_SYSPWR	When the SYSPWR stable loop is available,	RW	1
		charger will control the charging current,		
		ensuring SYSPWR voltage is above its stable		
		value.		
		Set SYSPWR stable value		
	CHG_SYSPWR_S	00:3.81V		
5:4	ET	01:3.96V	RW	1
		10:4.25V		
		11:4.40V		
		Charging current varies with temperature		
3	CHG_CURRENT	enable	RW	1
	_TEMP	0:Disable		
		1:Enable		
		Voltage of SYSPWR higher than BAT, then		
		CHPWROK		
2:1	CHGPWR_SET	00:0.1V	RW	1
	51101 ((IL_0L)	01:0.2V	1111	_
		10:0.3V		
		11:0.4V		
0	CHGAUTODETE	Auto detection of charging termination	RW	1

	CT_EN	1: enable	
		0: disable	

Note: When the timer of bit[13:12] or bit[11:10] arrived, bit[8] in PMU_CHARGER_CTL1 register will be set. And when bit[14] is set, charger will be stopped when timer of bit[13:12] arrives.

7.4.41 PMU_CHARGER_CTL1

PMU_CHARGER_CTL1 Register (RTCVDD) (default 0x0040)

Offset = 0x3A

Bit(s)	Name	Description	Access	Reset
		Charging end Status.	• • • •	7
		0: not charging over		
15	CHGEND	1: charging over.	R	X
		If battery is not full, this bit is 0; If battery is full,		
		this bit is 1.		
		Charging phase		
		00: Reserved		
		01: Pre-charging		
14:13	PHASE	10: Constant current	R	X
		11: Constant voltage		
		This two bits will be available only when bit ENCH		
		of this register is set, or will be always read 00		
		CHGPWROK flag		
12	CHGPWROK	0:SYSPWR voltage is not higher than BAT setting	R	X
		1:SYSPWR voltage is higher than BAT setting		
	CUR_ZERO	Charging current is 0 flag		
11		0: Charging current is not 0	R	X
		1: Charging current is 0		
	4	BAT existence flag		
10	BAT_EXIST	0:there is no BAT	R	X
		1:there is BAT		
		BAT detection finished		
9	BAT_DT_OVER	1:BAT detection finished	R	X
1		0:BAT detection not finished		
	CHARGED TO A	Charger_timer_end flag		
8	CHARGER_TIM	0:CC/CV TIMER/ Trickle timer is not finished	R	0
	ER_END	1:CC/CV TIMER/ Trickle timer is finished		
		Charger stop voltage (OCV)		
		0: 4.16V		
7	CTODY.	1: 4.18V	DW	0
7	STOPV	In charging, when battery voltage is higher than	RW	0
		setting, hardware will stop charging and delay for 1s		
		then detect the battery voltage and every 12 min, if		

		the voltage is detected higher than setting them		
		the voltage is detected higher than setting, then CHGEND bit will be set to 1		
		Auto increase/decrease charging current enable		
	CURRENT_SOF	0:Disable	DIV	
6	T_START	1:Enable	RW	1
		When this bit is enabled, charging current is		
		increasing with the time set by bit[8:7]		
		Battery detection enable		
5	BAT_EXIST_EN	This bit turns from 0 to 1 and delay for 50ms, bit[10]	RW	0
		flag is available. If needs to detect again, this bit		Ü
		should be set to 0 then set to 1		
		When CHGPWROK = 0, whether turn off the	• , • (7
4	CHARGER_AU	charger automatically enable	RW	0
7	TO_CLOSE_EN	0:Disable	KW	O
		1:Enable		
		Constant Current charging current configuration		
		0000:50mA		
		0001:100mA		
		0010:200mA		
		0011:400mA		
		0100:500mA		
		0101:600mA		
		0110:800mA		
3:0	ICHG_REG_CC	0111:900mA	RW	0
		1000:1000mA		
		1001:1200mA		
		1010:1300mA		
		1011:1400mA		
		1100:1600mA		
	• , (1101:1700mA		
	X	1110:1800mA		
		1111:2000mA	_	

7.4.42 PMU_CHARGER_CTL2

PMU_CHARGER_CTL2 Register (RTCVDD) (default 0x0000)

Offset = 0x3B

Bit(s)	Name	Description	Access	Reset
15	-	Reserved	-	-
14:13	ТЕМРТН1	IC temperature protection threshold1 in charging 00:75 $^{\circ}$ C 01:90 $^{\circ}$ C 10:105 $^{\circ}$ C	RW	0

		11:115℃		
		IC temperature protection threshold2 in charging		
12:11		00:90 ℃		
	TEMPTH2	01:105 ℃	RW	0
		10:120 ℃		
		11:135 ℃		
		IC temperature protection threshold3 in charging		
		00:100 ℃		
10:9	TEMPTH3	01:120 ℃	RW	0
		10:130 ℃	A	
		11:140 ℃		
		Time Step setting	• 66) '
		00:0.5s	K	
8:7	TIME_STEP	01:1s	RW	0
		10:2s		
		11:4s		
6	-	Reserved	-	-
		Charge trickle charging Current Configure		
		00:50mA		
5:4	ICHG_REG_T	01:100mA	RW	0
		10:200mA		
		11:300mA		
		Constant Voltage charging voltage setting		
		00:4.20V		
		01:4.30V		
		10:4.35V		
		11:4.40V		
3:2	CV_SET	Battery protection board is needed when this bit is	RW	0
		not 0. If constant voltage is 4.2V, when the battery		
		voltage is near 4.2V, charging current will decrease		
	Y	gradually, charging time will encrease. To decrease		
		the charging time, set the constant voltage to 4.3V		
		or higher. Note that SYSPWR should be higher		
1		than CV_SET.		
1:0	7	Reserved	-	-

7.4.43 PMU_APDS_CTL

PMU_APDS_CTL0 Register (RTCVDD) (default 0x15F8)

Offset = 0x3D

Bit(s)	Name	Description	Access	Reset
15	VDUS CONTROL EN	VBUS voltage current control	RW	Reset 0
	VBUS_CONTROL_EN	0:disable	KW	0

	1:enable		
	When this bit is enabled, the system will		
	adjust the current abstracted from VBUS		
	automatically according to bit[14],		
	ensuring the voltage of VBUS is above		
	the threshold set by bit[11:10] or current		
	abstracted from VBUS is smaller than the		
	value set by bit[13:12]. When this bit is		
	disabled, the current will be ensured		
	firstly.	A	
	If this bit is enabled, bit[8] is invalid.		
	VBUS control mode selection		P
14 VBUS_CONTROL_S	EL 0: voltage limiting	RW	0
	1: current limiting		
	VBUS current limiting threshold		
	00:1000mA		
13:12 VBUS_CUR_LIMITI	ED 01:300mA	RW	1
	10:500mA		
	11:800mA		
	VBUS voltage limiting threshold		
	00:4.2V		
11:10 VBUS_VOL_LIMITI	ED 01:4.3V	RW	1
	10:4.4V		
	11:4.5V		
	USB used as OTG, when VBUS supplies		
	power for external device, VBUS_OTG		
	should be set to 1, preventing VBUS		
A	supplies for SYSPWR.		
	0: enable the diode from VBUS to		
9 VBUS_OTG	SYSPWR	RW	0
	1: disable the diode from VBUS to		
	SYSPWR, VBUS and SYSPWR is shut		
	off completely		
	This bit is set to 0 by hardware		
	automatically when entering S2, S3, S4		
8 VBUS_FST_ON	When SYSPWR is lower than setting,	RW	1
0 1000_101_01	VBUS will be fast on	1777	1
7 VBUS_FST_OFF	When SYSPWR is higher than setting,	RW	1
, ADOSTISTOTI	VBUS will be fast off	17.11	1
	When SYSPWR is lower than setting, if		
6 WALL_FST_ON	WALL voltage is enough, WALL will be	RW	1
	fast on		
I -	When SYSPWR is higher than setting,	<u> </u>	
5 WALL_FST_OFF	when SISFWK is higher than setting,	RW	1

4	BAT_FST_ON	When SYSPWR is lower than setting, if BAT voltage is enough, BAT will be fast on	RW	1
3	BAT_FST_OFF	When SYSPWR is higher than setting, BAT will be fast off	RW	1
2	VBUS_PD	VBUS 5KOhm pull down resistor enable 0: no pull down resistor 1: 5KOhm pull down resistor is pulled down to ground	RW	0
1	WALL_PD	WALL 5KOhm pull down resistor enable 0: no pull down resistor 1: 5KOhm pull down resistor is pulled down to ground	RW	0
0	-	Reserved	- '	-

7.4.44 PMU_ICMADC

PMU_ICMADC Register (RTCVDD) (default 0x0000)

Offset = 0x50

Bit(s)	Name	Description	Access	Reset
15:12	-	Reserved	-	-
11	CMDATA_OK	0:CMDATA not ready 1:CMDATA ready	R	X
10:0	ICMADC	ICMADC data	R	X

7.4.45 PMU_ABNORMAL_STATUS

 $\label{eq:pmu_abnormal_status} \begin{array}{ll} PMU_ABNORMAL_STATUS \ Register \ (RTCVDD) & (default \ 0x0000) \\ Offset = 0x62 & \end{array}$

Bit(s)	Name	Description	Access	Reset
15:10	_	Reserved	-	-
9	SVCC_LOW	Quit S1 because of SVCC undervoltage	R	0x0
8	LDO6_OC	Quit S1 because of LDO6 overcurrent	R	0x0
7	LDO3_OC	Quit S1 because of LDO3 overcurrent	R	0x0
6	LDO2_OC	Quit S1 because of LDO2 overcurrent	R	0x0
5	LDO1_OC	Quit S1 because of LDO1 overcurrent	R	0x0
4	VBUS_OC	Quit S1 because of VBUS overcurrent	R	0x0
3	WALL_OC	Quit S1 because of WALL overcurrent	R	0x0
2	BAT_OC	Quit S1 because of BAT overcurrent	R	0x0
1	OT	Quit S1 because of overtemperature	R	0x0
0	BAT_LOW	Quit S1 because of BAT undervoltage	R	0x0

Copyright[©] 2014-2018 Actions (Zhuhai) Technology Co., Ltd. All rights reserved.

Note: Updating this register when quitting S1

7.4.46 PMU_WALL_APDS_CTL

PMU_WALL_APDS_CTL Register (RTCVDD) (default 0x1400)

Offset = 0x63

Bit(s)	Name	Description	Access	Reset
		WALL voltage current control		
		1: enable		
		0: disable		
		When this bit is enabled, the system	• 6	7
		will adjust the current abstracted from	VA	
		WALL automatically according to		
15	WALL_CONTROL_EN	bit[14], ensuring the voltage of WALL	RW	0
		is above the threshold set by		
		bit[11:10] or current abstracted from		
		WALL is smaller than the value set by		
		bit[13:12]. When this bit is disabled,		
		the current will be ensured firstly.		
		If this bit is enabled, bit[6] is invalid.		
		WALL control mode selection		
14	WALL_CONTROL_SEL	0: voltage limiting	RW	0
		1: current limiting		
		WALL current limiting threshold		
		00:300mA		
13:12	WALL_CUR_LIMITED	01:500mA	RW	1
		10:1500mA		
		11:2000mA		
	• \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	WALL voltage limiting threshold		
		00:4.2V		
11:10	WALL_VOL_LIMITED	01:4.3V	RW	1
		10:4.4V		
		11:4.5V		
		Diode from WALL to SYSPWR		
,		enable		
		0: enable the diode from WALL to		
		SYSPWR		
o	WALL_ID_EN	1: disable the diode from WALL to	RW	0
9	WALL_ID_EN	SYSPWR, VBUS and SYSPWR is	17.44	U
		shut off completely		
		This bit is set to 0 by hardware		
		automatically when entering S2, S3,		
		S4		

8:0	-	Reserved	-	-

7.4.47 PMU_REMCON_CTL0

PMU_REMCON_CTL0 Register (RTCVDD) (default 0x0000)

Offset = 0x64

Bit(s)	Name	Description	Access	Reset
15:10	-	Reserved	-	-
		REMCON voltage range 4 wakeup flag		
9	REMCON_WK_4	0:not REMCON voltage range 4 wakeup	R	0x0
		1:occur REMCON voltage range 4 wakeup	• 6/	7
		REMCON voltage range 3 wakeup flag	V	
8	REMCON_WK_3	0:not REMCON voltage range 3 wakeup	R	0x0
		1:occur REMCON voltage range 3 wakeup		
		REMCON voltage range 2 wakeup flag		
7	REMCON_WK_2	0:not REMCON voltage range 2 wakeup	R	0x0
		1:occur REMCON voltage range 2 wakeup		
		REMCON voltage range 1 wakeup flag		
6	REMCON_WK_1	0:not REMCON voltage range 1 wakeup	R	0x0
		1:occur REMCON voltage range 1 wakeup		
		REMCON voltage range 0 wakeup flag		
5	REMCON_WK_0	0:not REMCON voltage range 0 wakeup	R	0x0
3		1:occur REMCON voltage range 0 wakeup		0110
	REMCON_WK_EN_4	Enable REMCON voltage range 4 wakeup	RW	
		(2.4V~3.1V)		
4		0:disable		0x0
		1:enable		
	Y'	Enable REMCON voltage range 3 wakeup		
	', O	(1.68V~2.4V)		
3	REMCON_WK_EN_3	0:disable	RW	0x0
		1:enable		
		Enable REMCON voltage range 2 wakeup		
7		(1.03V~1.68V)		
2	REMCON_WK_EN_2	0:disable	RW	0x0
		1:enable		
		Enable REMCON voltage range 1 wakeup		
		$(0.46V\sim1.03V)$		
1	REMCON_WK_EN_1	0.46 v~1.05 v) 0:disable	RW	0x0
		1:enable		
		Enable REMCON voltage range 0 wakeup		
0	REMCON_WK_EN_0	(0V~0.46V)	RW	0x0
		0:disable		
		1:enable		

7.4.48 PMU_REMCON_CTL1

PMU_REMCON_CTL1 Register (RTCVDD) (default 0x0000)

Offset = 0x65

Bit(s)	Name	Description	Access	Reset
15:12	-	Reserved	-	-
		REMCON interrupt enable		
11	REMCON_INT_EN	0: Disable	RW	0x0
		1: Enable		
		Status flag clear bit		
10	REMCON_PD_CLEA	When writing 1 to this bit, bit[9:5] will be	RW	0x0
	R	cleared, then this bit turn to 0.	, , (7
		REMCON voltage range 4 key happen	X	
		pending		
		0: REMCON voltage range 4 is not pressed		
9	REMCON_PD_4	down	RW	0x0
		1: REMCON voltage range 4 is pressed	10,,	ono
		down		
		Write 1 to clear to 0		
		REMCON voltage range 3 key happen		
		pending		
		0: REMCON voltage range 3 is not pressed		
0	REMCON_PD_3		DW	00
8		down	RW	0x0
		1: REMCON voltage range 3 is pressed		
		down		
		Write 1 to clear to 0		
		REMCON voltage range 2 key happen		
		pending		
		0: REMCON voltage range 2 is not pressed		
7	REMCON_PD_2	down	RW	0x0
		1: REMCON voltage range 2 is pressed		
		down		
		Write 1 to clear to 0		
V		REMCON voltage range 1 key happen		
)	·	pending		
		0: REMCON voltage range 1 is not pressed		
6	REMCON_PD_1	down	RW	0x0
		1: REMCON voltage range 1 is pressed		
		down		
		Write 1 to clear to 0		
		REMCON voltage range 0 key happen		
		pending		
5	DEMCON DD O	F	RW	0x0
5	REMCON_PD_0	0: REMCON voltage range 0 is not pressed	17.44	OAO

		1: REMCON voltage range 0 is pressed		
		down		
		Write 1 to clear to 0		
		Enable REMCON voltage range 4 interrupt		
4	REMCON_INT_EN_4	(2.40V~3.10V)	RW	0x0
4	KEMCON_INT_EN_4	0: disable	KW	UXU
		1: enable		
		Enable REMCON voltage range 3 interrupt		
3	REMCON_INT_EN_3	(1.68V~2.40V)	RW	0x0
3	REMCON_INT_EN_5	0: disable	KW	OXO
		1: enable		
		Enable REMCON voltage range 2 interrupt	. 6/	Y ′
2	REMCON_INT_EN_2	(1.03V~1.68V)	RW	0x0
2	KEMCON_INT_EN_2	0: disable	ICW	UXU
		1: enable		
		Enable REMCON voltage range 1 interrupt		
1	REMCON_INT_EN_1	(0.46V~1.03V)	RW	0x0
1	KEMCON_INT_EN_T	0: disable	IXW	UXU
		1: enable		
		Enable REMCON voltage range 0 interrupt		
0	REMCON_INT_EN_0	(0V~0.46V)	RW	0x0
	KEMCON_HVI_EN_U	0: disable	17.44	UAU
		1: enable		

7.4.49 PMU_MUX_CTL0

PMU_MUX_CTL0 Register (RTCVDD) (default 0x0000)

Offset = 0x66

Bit(s)	Name	Description	Access	Reset
15:14	-	Reserved	-	-
		SGPIO5 Multiplexing		
		00: SGPIO5(<1MHz)		
13:12	SGPIO5	01: IR	RW	0
		10: Release 32kHz clock		
		11: Reserved		
		SGPIO4 Multiplexing		
		00: SGPIO4(<1M)		
11:10	SGPIO4	01: IR	RW	0
		10: Release 32kHz clock		
		11: PWM0		
		AUXIN2 Multiplexing		
9:8	AUXIN2	00: AUXIN2	RW	0
		01: SGPIO3(<1MHz)		

Copyright[©] 2014-2018 Actions (Zhuhai) Technology Co., Ltd. All rights reserved.

		10: IR		
		11: Release 32kHz clock		
		AUXIN0 Multiplexing		
		000: AUXIN1		
		001: Reserved		
7:5	AUXIN1	010: IR	RW	0
		011: Release 32kHz clock		
		100: PWM1		
		Others: reserved		
_		AUXIN0 Multiplexing	/	
		000: AUXIN0		
		001: SGPIO1(<1MHz)	• 6	'
4:2	AUXIN0	010: IR	RW	0
		011: Release 32kHz clock		
		100: PWM0		
		Others: reserved	,	
		REMCON Multiplexing		
		00: REMCON		
1:0	REMCON	01: SGPIO0(<1MHz)	RW	0
		10: IR		
		11: Release 32kHz clock		

Note: Release 32 kHz clock is choosed after digital selection.

7.4.50 PMU_SGPIO_CTL0

PMU_SGPIO_CTL0 Register (RTCVDD) (default 0x0000) Offset = 0x67

Bit(s)	Name	Description	Access	Reset
15	-	Reserved	-	-
		SGPIO[5:3]_IRQ pending		
14:12	SGPIO[5:3]_PD	0: is not active	RW	0x0
14.12		1: is active	KW	UXU
		Write 1 to clear to 0		i
11	<i>-</i>	Reserved	-	-
/		SGPIO[1:0]_IRQ pending	RW	0x0
10:9	SGPIO[1:0]_PD	0: is not active		
10.9	3010[1.0]_10	1: is active	KW	UXU
		Write 1 to clear to 0		
8	-	Reserved	-	-
		SGPIO[5:3] interrupt enable		
7:5	SGPIO[5:3]_INT_EN	0: disable	RW	0x0
		1: enable		
4	-	Reserved	-	-

Copyright[©] 2014-2018 Actions (Zhuhai) Technology Co., Ltd. All rights reserved.

3:2	SGPIO[1:0]_INT_EN	SGPIO[1:0] interrupt enable 0: disable 1: enable	RW	0x0
1:0	-	Reserved	-	-

7.4.51 PMU_SGPIO_CTL1

PMU_SGPIO_CTL1 Register (RTCVDD) (default 0x0000)

Offset = 0x68

Bit(s)	Name	Description	Access	Reset
15:14	-	Reserved	2, 6/	7
		SGPIO5 IRQ type		
		00:High level active	V	
13:12	SGPIO5_TPYE	01:Low level active	RW	0x0
		10:Rising edge- triggered		
		11:Falling edge-triggered		
		SGPIO4 IRQ type		
		00:High level active		
11:10	SGPIO4_TPYE	01:Low level active	RW	0x0
		10:Rising edge- triggered		
		11:Falling edge-triggered		
		SGPIO3IRQ type		
		00:High level active		
9:8	SGPIO3_TPYE	01:Low level active	RW	0x0
		10:Rising edge- triggered		
		11:Falling edge-triggered		
7:6	-	Reserved	-	-
	, O ^y	SGPIO1IRQ type		
		00:High level active		
5:4	SGPIO1_TPYE	01:Low level active	RW	0x0
		10:Rising edge- triggered		
		11:Falling edge-triggered		
	7 7	SGPIO0 IRQ type		
\	/	00:High level active		
3:2	SGPIO0_TPYE	01:Low level active	RW	0x0
		10:Rising edge-triggered		
		11:Falling edge-triggered		
1:0	-	Reserved	-	-

7.4.52 PMU_SGPIO_CTL2

PMU_SGPIO_CTL2 Register (RTCVDD) (default 0x0000)

Offset = 0x69

Bit(s)	Name	Description	Access	Reset
15	-	Reserved	-	-
		SGPIO[5:3] IRQ wakeup flag		
14:12	SGPIO_IRQ_WK_FLAG[5:3]	0: no SGPIO[5:3] wakeup	R	OvO
14.12	SOFIO_IRQ_WK_ITEAG[3.3]	1: SGPIO0[5:3] wakeup	K	
		(Quit S1 HW will clear to 0)		
11	-	Reserved	-	-
		SGPIO[1:0] IRQ wakeup flag		
10:9	SGPIO_IRQ_WK_FLAG[1:0]	0: no SGPIO[1:0] wakeup	R	OvO
10.9		1: SGPIO0[1:0] wakeup		UXU
		(Quit S1 HW will clear to 0)		D '
8	-	Reserved	(-	-
		SGPIO[5:3]_IRQ wakeup enable	V	
7:5	SGPIO_IRQ_WK_EN[5:3]	0: disable	RW	0x0
		1: enable		
4	-	Reserved	-	-
		SGPIO[1:0]_IRQ wakeup enable		
3:2	SGPIO_IRQ_WK_EN[1:0]	0: disable	RW	0x0
		1: enable		
1:0	-	Reserved	-	-

7.4.53 PMU_SGPIO_CTL3

PMU_SGPIO_CTL3 Register (RTCVDD) (default 0x0000)

Offset = 0x6A

Bit(s)	Name	Description	Access	Reset
15	-	Reserved	-	_
		SGPIO[5:3] output enable		
14:12	SGPIO_OUT_EN[5:3]	0:disable	RW	0x0
		1:enable		
11	_	Reserved	-	-
V		SGPIO[1:0] output enable		
10:9	SGPIO_OUT_EN[1:0]	0:disable	RW	0x0
		1:enable		
8	-	Reserved	-	-
		SGPIO[5:3] input enable		
7:5	SGPIO_IN_EN[5:3]	0:disable	RW	0x0
		1:enable		
4	-	Reserved	-	-
3:2	SCDIO IN ENITIO	SGPIO[1:0] input enable	RW	0.40
3.2	SGPIO_IN_EN[1:0]	0:disable	KVV	0x0

		1:enable		
1:0	-	Reserved	1	-

7.4.54 PMU_SGPIO_CTL4

PMU_SGPIO_CTL4 Register (RTCVDD) (default 0x0000)

Offset = 0x6B

Bit(s)	Name	Description	Access	Reset
15:6	-	Reserved	-	-
5:3	SGPIO_DATA[5:3]	SGPIO[5:3] DATA	RW	0x0
2	-	Reserved	- \ '(7
1:0	SGPIO_DATA[1:0]	SGPIO[1:0] DATA	RW	0x0

7.4.55 PWMCLK_CTL

PWM clock controller register (RTCVDD) (default 0x0000)

Offset = 0x6C

Bit(s)	Name	Description	Access	Reset
15:14	-	Reserved	-	-
		PWM Module enable		
13	PWM_EN	0: disable	RW	0x0
		1: enable		
		PWM Module reset		
12	PWM_RST	0: reset	RW	0x1
		1: normal		
		Time of Every Duty = $1/3232/32$:		
11:10	Q1	Climb up and falling down time:	RW	- 0x0
11.10	QI	T2 = (Q + 1) * 32 * 32t	IXVV	
		t is the period of PWMCLKDIV		
		Time of Every Duty = $1/32 \dots 32/32$:		
9:8	Q0	Climb up and falling down time:	RW	0**0
9.0	Qu	T2 = (Q + 1) * 32 * 32t	IXW	UXU
		t is the period of PWMCLKDIV		
		PWM controller clock divisor:		
		0: /1		
7:0	PWMCLKDIV	1: /2	RW	0x0
		255: /256		

Copyright[©] 2014-2018 Actions (Zhuhai) Technology Co., Ltd. All rights reserved.

Version 2.3

7.4.56 PWM0_CTL

PWM0 control register (RTCVDD) (default 0x0000)

Offset = 0x6D

Bit(s)	Name	Description	Access	Reset
		Time of Duty =32/32 :		
15:8	H0	High Level Time = H*32t	RW	0x0
		t is the period of PWMCLKDIV		
		Time of Duty =0/32:		
7:0	L0	Low Level Time = L*32t	RW	0x0
		t is the period of PWMCLKDIV	. (

7.4.57 **PWM1_CTL**

PWM1 control register (RTCVDD) (default 0x0000)

Offset = 0x6E

Bit(s)	Name	Description	Access	Reset
		Time of Duty =32/32:		
15:8	H1	High Level Time = H*32t	RW	0x0
		t is the period of PWMCLKDIV		
		Time of Duty =0/32:		
7:0	L1	Low Level Time = L*32t	RW	0x0
		t is the period of PWMCLKDIV		

8 Auxiliary ADC

8.1 Module Description

ATC2603C integrates a 10-bit, 16-channel Analog-to-Digital Converter (ADC), which sample rate of each channel is 3.2kHz, converting one of the 16 analog inputs to 10-bit digital data. Its input voltage range is 0~3V, the application of each bit is listed below:

ADC_2 ADC_0 ADC_1 ADC_3 ADC_4 ADC_5 ADC_6 ADC_7 BATV **BATI VBUSI SYSPWR VBUSV** WALLV WALLI **ICHG** ADC 8 ADC 9 **ADC 10 ADC 11** ADC 12 **ADC 13** ADC 14 **ADC 15** SVCC/ REM_CON **ICTEMP BAKBAT AUXADC AUXADC AUXADC ICMADC IREF**

Table 8-1 AUXADC functional specifications

AUXADC0~2 is for general use. WALL, SYSPWR and VBUS will pass a 2.5 voltage divider before sent to ADC, so the formula for WALL, SYSPWR, VBUS voltage (V) that relates their ADC output (DATA) can be described by:

$$V = DATA*LSB*2.5$$

While BAT will pass a 2 voltage divider before sent to ADC, so the relationship between BAT voltage and its ADC output is:

$$V = DATA * LSB * 2$$

In addition, ADC also detects the current from VBUS to SYSPWR, current from BAT to SYSPWR, charger's charging current, BAKE BAT voltage, SVCC voltage, battery temperature and etc. The full current range of BATI, WALLI, VBUSI and ICHG current can be expressed as follows:

$$IBAT = ADC_DBG3/IREFADC*1545.75(mA)$$

$$IWALL = ADC DBG2/IREFADC*1527(mA)$$

$$IVBUS = ADC \quad DBG1/IREFADC *1509(mA)$$

For $CHIP_VER(0xDC)=0x0$:

$$ICHG = ADC_DBGO / IREFADC *1546(mA)$$

For CHIP_VER(0xDC)=0x1:

$$ICHG = ADC_DBGO/IREFADC * 2061(mA)$$

The relationship between IC Temperature (TEMP) and ICTEMP's ADC data can be expressed as follows:

$$TEMP = 0.1949 * DATA - 14.899 - 30(^{\circ}C)$$

For REM_CON ADC, its input range is 0~3V, the drive-by-wire ADC is distinguished by different voltages on different buttons. When the wire button's supply voltage is changed, the corresponding voltage of the same button will be different, so REM_CON data reflects the voltage ratio of REM CON and SVCC:

$$REM _CON = ADC _DBG4*1024/2*SVCCADC$$

In the formula above, ADC_DBG4*1024/2 represents different button's value, indicating that the button's voltage is ADC_DBG4*1024/2 times that of SVCC ADC, ADC_DBG4 is the REM_CON analog input value.

About the ICMADC:

Because a detection series resistor should be applied in the current detection route, so in case of large voltage drop, the detection resistor should be small. In this case, a pre-amplifier is implemented to amplify the small signal to the range of ADC input voltage. The input voltage range of ADC is 0~3V. When an external 20mOhm resistor is used, the full range is -2312~+2312mA, accordingly, relationship between data and current is:

$$I=DATA*LSBI = DATA*2.25832mA$$

When an external 10mOhm resistor is applied, the full range is -4624~+4624mA, accordingly, relationship between data and current is:

$$I = DATA * LSBI = DATA * 4624/1024 (mA) = DATA * 4.51664 mA$$

Note:

DATA is the decimal value of 0x50 PMU_ICADC[9:0]. PMU_ICADC[10] is the symbol bit, when it is 0 meaning forward current, flowing from CMN to CMP; when the current is negative, the absolute value calculated by ICMADC is larger 1 step than the actual value. For example, when 20mOhm is applied, if the actual current is -0.1mA, then the calculated value will be -2.25832mA.

8.2 Register List

Table 8-2 AUXADC Block Address

Name	Base Address
AUXADC	0x0000

Table 8-3 AUXADC Controller Registers

Offset	Register Name	Description
0x3E	PMU_AUXADC_CTL0	PMU AuxADC CONTROL Register0
0x3F	PMU_AUXADC_CTL1	PMU AuxADC CONTROL Register1
0x40	PMU_BATVADC	PMU BATVADC Register
0x41	PMU_BATIADC	PMU BATIADC Register
0x42	PMU_WALLVADC	PMU WALLVADC Register
0x43	PMU_WALLIADC	PMU WALLIADC Register
0x44	PMU_VBUSVADC	PMU VBUSVADC Register
0x45	PMU_VBUSIADC	PMU VBUSIADC Register
0x46	PMU_SYSPWRADC	PMU SYSPWRADC Register
0x47	PMU_REMCONADC	PMU REMCONADC Register

0x48	PMU_SVCCADC	PMU SVCCADC Register
0x49	PMU_CHGIADC	PMU CHGIADC Register
0x4A	PMU_IREFADC	PMU IREFADC Register
0x4B	PMU_BAKBATADC	PMU BAKBATADC Register
0x4C	PMU_ICTEMPADC	PMU ICTEMPADC Register
0x4D	PMU_AUXADC0	PMU AuxADC0 Register
0x4E	PMU_AUXADC1	PMU AuxADC1 Register
0x4F	PMU_AUXADC2	PMU AuxADC2 Register
0x70	PMU_ADC_DBG0	PMU ADC debug out0 register
0x71	PMU_ADC_DBG1	PMU ADC debug out1 register
0x72	PMU_ADC_DBG2	PMU ADC debug out2 register
0x73	PMU_ADC_DBG3	PMU ADC debug out3 register
0x74	PMU_ADC_DBG4	PMU ADC debug out4 register

8.3 Register Description

8.3.1 PMU_AUXADC_CTL0

PMU_AUXADC_CTL0 Register (RTCVDD) (default 0xFFFF)
Offset = 0x3E

Bit(s)	Name	Description	Access	Reset
		AUXADC0 ADC enable		
15	AUXADC0_EN	0: disable	RW	1
		1: enable		
		AUXADC1 ADC enable		
14	AUXADC1_EN	0: disable	RW	1
	• ()	1: enable		
		AUXADC2 ADC enable		
13	AUXADC2_EN	0: disable	RW	1
		1: enable		
		ICMADC ADC enable		
12	ICMADC_EN	0: disable	RW	1
<i>-</i>		1: enable		
		VBUS VOLATGE ADC enable		
11	VBUSVADC_EN	0: disable	RW	1
		1: enable		
		WALL VOLATGE ADC enable		
10	WALLVADC_EN	0: disable	RW	1
		1: enable		
		SYSPWR VOLATGE ADC enable		
9	SYSPWRADC_EN	0: disable	RW	1
		1: enable		

		BAKBAT VOLTAGE ADC enable		
8	BAKBATADC_EN	0: disable	RW	1
		1: enable		
		BAT VOLATGE ADC enable		
7	BATVADC_EN	0: disable	RW	1
		1: enable		
		TEMP ADC enable		
6	TEMP_ADC	0: disable	RW	1
		1: enable		
	DEMCON ADG E	REMCON ADC enable	A	
5	REMCON_ADC_E	0: disable	RW	1
	N	1: enable	• 67)
		BAT CURRENT ADC enable	N.	7
4	BATIADC_EN	0: disable	RW	1
		1: enable		
		WALL CURRENT ADC enable		
3	WALLIADC_EN	0: disable	RW	1
		1: enable		
		VBUS CURRENT ADC enable		
2	VBUSIADC_EN	0: disable	RW	1
		1: enable		
		Charger current ADC enable		
1	CHGIADC_EN	0: disable	RW	1
		1: enable		
		CURRENT REF ADC enable/ SVCC ADC		
	IREFADC_EN/	enable	DW	
0	SVCC_ADC_EN	0: disable	RW	1
		1: enable		

8.3.2 PMU_AUXADC_CTL1

PMU_AUXADC_CTL1 Register (RTCVDD) (default 0x000B)

Offset = 0x3F

Bit(s)	Name	Description	Access	Reset
15:12	1	Reserved	1	-
11	CLK_EXT_SEL	Enable external clock, PMU_ADC adopt external clock input 1:enable 0:disable	RW	0
10	1	Reserved	1	-
9:8	AP_BIAS	Bias of coulomb meter's pre-amplifier: 00:0.5μA 01:medium	RW	01

Copyright[©] 2014-2018 Actions (Zhuhai) Technology Co., Ltd. All rights reserved.

		10 and 11:big		
		Enable coulomb meter's pre-amplifier		
7	EN_CM_AP	1:enable	RW	1
		0:disable		
		Enable pre-amplifier's primary offset		
6	ENCHOP	reduction function	RW	1
0	ENCHOP	1:enable	KW	1
		0:disable		
		Enable automatic gain control of the		
_	AUTOCACTI EN	pre-amplifier.	RW	1
5	AUTOGACTL_EN	1: gain = Auto Selection	KW	1
		0: gain = Fixed	• 67	Y
		The resistor between CMN and CMP	K	7
4	CM_R	0:20mOhm	RW	0
		1:10mOhm		
		ADC Comp Offset Trimming		
3	ADC_COMP_TMEN	0: Disable	RW	1
		1: Enable		
	ADC COMP DIAG	ADC COMP BIAS	DW	0
2	ADC_COMP_BIAS	0: 4μA1: bigger	RW	0
		ADC INPUT RANGE		
1	ADC_INPUT_RANGE	0: 0~1.5V	RW	1
		1: 0~3.0V		
		ADC clock adjust		
0	ADC_CLOCK_ADJ	0: 300kHz	RW	1
		1: higher		

8.3.3 PMU_BATVADC

PMU_BATADC Register (RTCVDD) (default 0x0000)

Offset = 0x40

Bit(s)	Name	Description	Access	Reset
15:10	/- /	Reserved	-	-
9:0	BATVADC	BATVADC data	R	X

8.3.4 PMU_BATIADC

PMU_BATIADC Register (RTCVDD) (default 0x0000)

Offset = 0x41

Bit(s)	Name	Description	Access	Reset
15:10	-	Reserved	-	1

9:0	BATIADC	BATIADC data	R	X
-----	---------	--------------	---	---

8.3.5 PMU_WALLVADC

PMU_WALLADC Register (RTCVDD) (default 0x0000)

Offset = 0x42

Bit(s)	Name	Description	Access	Reset
15:10	-	Reserved	-	-
9:0	WALLVADC	WALLVADC data	R	X

8.3.6 PMU_WALLIADC

PMU_WALLIADC Register (RTCVDD) (default 0x0000)

Offset = 0x43

Bit(s)	Name	Description	Access	Reset
15:10	1	Reserved	-	-
9:0	WALLIADC	WALLIADC data	R	X

8.3.7 PMU_VBUSVADC

PMU_VBUSADC Register (RTCVDD) (default 0x0000)

Offset = 0x44

Bit(s)	Name	Description	Access	Reset
15:10	-	Reserved	-	-
9:0	VBUSVADC	VBUSVADC data	R	X

8.3.8 PMU_VBUSIADC

PMU_VBUSIADC Register (RTCVDD) (default 0x0000)

Offset = 0x45

Bit(s)	Name	Description	Access	Reset
15:10	-	Reserved	-	-
9:0	VBUSIADC	VBUSIADC data	R	X

8.3.9 PMU_SYSPWRADC

PMU_SYSPWRADC Register (RTCVDD) (default 0x0000)

Offset = 0x46

Copyright[©] 2014-2018 Actions (Zhuhai) Technology Co., Ltd. All rights reserved.

Bit(s)	Name	Description	Access	Reset
15:10	-	Reserved	-	-
9:0	SYSPWRADC	SYSPWRADC data	R	X

8.3.10 PMU_REMCONADC

PMU_REMCONADC Register (RTCVDD) (default 0x0000)

Offset = 0x47

Bit(s)	Name	Description	Access	Reset
15:10	-	Reserved	- 0	-
9:0	REMCONADC	REMCON ADC data	R	x

8.3.11 PMU_SVCCADC

PMU_SVCCADC Register (RTCVDD) (default 0x0000)

Offset = 0x48

Bit(s)	Name	Description	Access	Reset
15:10	-	Reserved	-	-
9:0	SVCCADC	SVCC ADC data	R	X

8.3.12 PMU_CHGIADC

PMU_CHGIADC Register (RTCVDD) (default 0x0000)

Offset = 0x49

Bit(s)	Name	Description	Access	Reset
15:10	-	Reserved	-	-
9:0	CHGIADC	CHGIADC data	R	X

8.3.13 PMU IREFADC

PMU_IREFADC Register (RTCVDD) (default 0x0000)

Offset = 0x4A

Bit(s)	Name	Description	Access	Reset
15:10	-	Reserved	-	-
9:0	IREFADC	IREFADC data	R	X

8.3.14 PMU_BAKBATADC

PMU_BAKBATADC Register (RTCVDD) (default 0x0000)

Offset = 0x4B

Bit(s)	Name	Description	Access	Reset
15:10	-	Reserved	-	-
9:0	BAKBATADC	BAKE BATTERY VOLTAGE ADC data	R	X

8.3.15 PMU_ICTEMPADC

PMU_ICTEMPADC Register (RTCVDD) (default 0x0000)

Offset = 0x4C

Bit(s)	Name	Description	Access	Reset
15:10	-	Reserved	/-	-
9:0	ICTEMPADC	ICTEMPADC ADC data	R	X

8.3.16 PMU_AUXADC0

PMU_AuxADC0 Register (RTCVDD) (default 0x0000)

Offset = 0x4D

Bit(s)	Name	Description	Access	Reset
15:10	-	Reserved	-	-
9:0	AUXADC0	AuxADC0 data	R	X

8.3.17 PMU_AUXADC1

PMU_AuxADC1 Register (RTCVDD) (default 0x0000)

Offset = 0x4E

Bit(s)	Name	Description	Access	Reset
15:10	-	Reserved	-	-
9:0	AUXADC1	AUXADC1 data	R	X

8.3.18 PMU_AUXADC2

PMU_AuxADC2 Register (RTCVDD) (default 0x0000)

Offset = 0x4F

Bit(s)	Name	Description	Access	Reset
15:10	-	Reserved	-	-
9:0	AUXADC2	AUXADC2 data	R	X

Copyright[®] 2014-2018 Actions (Zhuhai) Technology Co., Ltd. All rights reserved.

8.3.19 PMU_ADC_DBG0

PMU ADC debug 0 register (RTCVDD) (default 0x0000)

Offset = 0x70

Bit(s)	Name	Description	Access	Reset
15:10	-	Reserved	-	-
9:0	ADC_DBG0	PMU ADC debug 0	R	X

8.3.20 PMU_ADC_DBG1

PMU ADC debug 1 register (RTCVDD) (default 0x0000)

Offset = 0x71

Bit(s)	Name	Description	Access	Reset
15:10	-	Reserved		-
9:0	ADC_DBG1	PMU ADC debug 1	R	X

8.3.21 PMU_ADC_DBG2

PMU ADC debug 2 register (RTCVDD) (default 0x0000)

Offset = 0x72

Bit(s)	Name	Description	Access	Reset
15:10	-	Reserved	-	-
9:0	ADC_DBG2	PMU ADC debug 2	R	X

8.3.22 PMU_ADC_DBG3

PMU ADC debug 3 register (RTCVDD) (default 0x0000)

Offset = 0x73

Bit(s)	Name	Description	Access	Reset
15:10	77	Reserved	-	-
9:0	ADC_DBG3	PMU ADC debug 3	R	X

8.3.23 PMU_ADC_DBG4

PMU ADC debug 4 register (RTCVDD) (default 0x0000)

Offset = 0x74

Bit(s)	Name	Description	Access	Reset
15:10	-	Reserved	-	-
9:0	ADC_DBG4	PMU ADC debug 4	R	X

Copyright[®] 2014-2018 Actions (Zhuhai) Technology Co., Ltd. All rights reserved.

Page 101

9 Real-Time Clock

9.1 Module Description

RTC module provides system timing and alarm functions, it supports power-off and power-on by alarm. Its clock is based on 32.768 kHz oscillator, which can be provided by a built-in or external oscillator, and the external OSC is used by default.

At the system power on the internal OSC is used, then there is a process of selecting clock source, if an oscillatory waveform is detected at LOSC, the detect circuit will delay about 1ms and then set RTC_CTL[3] to 1, and external OSC is selected. If no waveform is detected at LOSC, the detect circuit will delay about 3ms and set RTC_CTL[3] to 0, internal OSC will be selected.

Whether the system is in Standby or normal working mode, if the system chooses the external LOSC but the external LOSC stopped working, RTCVDD_OK will be pulled down and then the whole system will be reset. Powered on next time, the system will use internal OSC by default.

9.1.1 32kHz Oscillator

An external 32.768 kHz crystal oscillator should be supplied to ATC2603C system to get an accurate clock for Real Time Clock (RTC) and an alarm function capable of waking up the system. If the requirement for 32.768 kHz clock is not too accurate, the system will choose the built-in oscillator instead of the external 32.768 kHz oscillator.

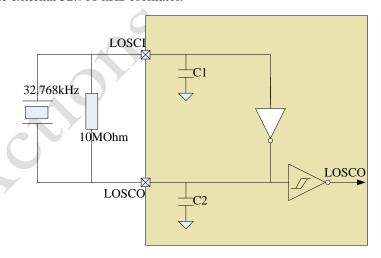


Figure 9-1 LOSC block diagram

The main clock of ATC2603C is got directly from the Master.

Copyright[©] 2014-2018 Actions (Zhuhai) Technology Co., Ltd. All rights reserved.

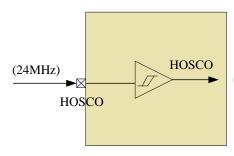


Figure 9-2 HOSC block diagram

9.1.2 Calendar

When RTCE=1, RTC_H, RTC_MS and RTC_YMD clock is based on LOSC_CLK, Master can only read the registers to get the current time in this case. When RTCE=0, the registers can be written to set the current time.

9.1.3 Alarm

When RTCE=ALIE=1, if RTC_HALM=RTC_H, RTC_MSALM=RTC_MS and RTC_YMDALM = RTC_YMD, an Alarm IRQ will be generated, which can be cleared by setting ALIP to 1.

9.2 Register List

Table 9-1 RTC Block Address

Name	Base Address
RTC	0x0000

Table 9-2 RTC Controller Registers

Offset	Register Name	Description
0x52	RTC_CTL	RTC control register
0x53	RTC_MSALM	RTC ALARM Minute second REGISER
0x54	RTC_HALM	RTC ALARM Hour REGISER
0x55	RTC_YMDALM	RTC ALARM Year month date REGISER
0x56	RTC_MS	RTC Minute second REGISER
0x57	RTC_H	RTC Hour REGISER
0x58	RTC_DC	RTC day century REGISER
0x59	RTC_YMD	RTC year month date REGISER

9.3 Register Description

9.3.1 RTC_CTL

Calendar Control Register (RTCVDD) (default 0x5A50) Offset=0x052

Bits	Name	Description	Access	Reset
15:14	LGS	Low frequency crystal Oscillator GMNIN select bits	RW /	1
		LOSC Capacitor Select:		
		00:12pF	• 67	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
13:12	LOSC_CP	01:15pF	RW	1
		10:18pF		
		11:21pF		
		RTC Reset	/	
11	RST	1: Normal	RW	1
		0: Reset		
		RTC Verify Clock Enable		
1.0	WEDI	Switch RTC clock to 32 kHz	DW	0
10	VERI	1: Enable	RW	0
		0: Disable		
		RTC Leap Year bit		
9	LEAP	1: leap year	R	1
		0: non-leap year		
8:7	-	Reserved	-	-
		External Crystal OSC enable		
6	EOSC	1: Enable	RW	1
		0: Disable		
	•	RTC_32K clock Source Select		
5	CKSS0	1: External Crystal OSC	RW	0
		0: Built-in OSC		
		RTC Enable		
4	RTCE	1: Enable	RW	1
		0: Disable		
	EVE LOGG GE	External LOSC State:		
3	EXT_LOSC_ST	0:external LOSC stop Oscillating	R	X
	ATE	1:external LOSC is Oscillating		
2	-	Reserved	-	-
		Alarm IRQ Enable		
1	ALIE	1: Enable	RW	0
		0: Disable		
0	ALIP	Alarm IRQ Pending bit, writing 1 to this bit will clear it	RW	0

Note:

- Bit[5] CKSS0: only when RTCVDD is completely powered off, will CKSS0 be reset.
- Calendar and Alarm module need precise low frequency clock, so an external crystal OSC is should be applied in application.
- Bit[13:12] LOSC_CP: LOSC circuit matching capacitor selection should refer to the load capacitor of the external crystal OSC, a default value of 01 or 10 is used in general.
- Bit[15:14] LGS: this bit is the LOSC circuit driving ability enhancing bit, the driving strength can be sorted as 2b11>2b10>2b01>2b00, the default value is recommended.
- Bit[3] EXT_LOSC_STATE: the state bit of external starting LOSC oscillating.

9.3.2 RTC_MSALM

Calendar MSALM Register (RTCVDD) (default 0x0000) Offset=0x053

Bits	Name	Description	Access	Reset
15:12	-	Reserved	<u>-</u>	-
11:6	IMINAL	Alarm minute setting 0x00 – 0x3B	RW	0
5:0	SECAL	Alarm second setting 0x00 - 0x3B	RW	0

9.3.3 RTC HALM

Calendar HALM Register (RTCVDD) (default 0x0000) Offset=0x054

Bits	Name	Description	Access	Reset
15:5	-	Reserved	-	_
4:0	HOUEAL	Alarm hour setting $0x00 - 0x17$	RW	0

9.3.4 RTC YMDALM

Calendar YMDALM Register (RTCVDD) (default 0x0000)

Offset=0x055

Bits	Name	Description		Reset
15:9	YEARAL	Alarm year setting	RW	0
13.9	IEARAL	0x00 - 0x63	IX VV	U
8:5	MONAL	Alarm month setting	RW	0
8:3	MONAL	0x01 - 0x0C	K W	0
4.0	DATEAL	Alarm day setting	DW	0
4:0	DAIEAL	0x01 - 0x1F	RW	0

9.3.5 RTC_MS

Calendar MS Register (RTCVDD) (default 0x0000)

Offset=0x056

Bits	Name	Description		Reset
15:12	-	Reserved -		-
11.6	MINI	Time minute setting	DW	0
11:6	MIN	0x00 - 0x3B	RW	0
5.0	SEC	Time second setting	DW/	0
3:0	5:0 SEC	0x00 - 0x3B	RW	0

9.3.6 RTC_H

Calendar HOUR Register (RTCVDD) (default 0x0000)

Offset=0x057

Bits	Name	Description	Access	Reset
15:5	-	Reserved	-	-
4:0	HOUR	Time hour setting $0x00 - 0x17$	RW	0

9.3.7 RTC_DC

Calendar DC Register (RTCVDD) (default 0x0080)

Offset=0x058

Bits	Name Description		Access	Reset
15:10	O - Reserved -		-	-
0.7	DAV	Time day setting	RW	1
9:7 DAY	0x01 - 0x07	KW		
C.O	CENT	Time setting	DW	0
0:0	6:0 ICENT	0x00 - 0x63	RW	0

9.3.8 RTC_YMD

 $Calendar\ YMD\ Register\quad (RTCVDD)\quad (default\ 0x0021)$

Offset=0x059

Bits	Name	Description	Access	Reset
15:9	YEAR	Time year setting $0x00 - 0x63$	RW	0
8:5	MON	Time month setting	RW	1
8:5	MON	Time month setting $0x01 - 0x0C$	RW	

 $\textbf{Copyright}^{\texttt{©}}\,\textbf{2014-2018}\,\,\textbf{Actions}\,\,\textbf{(Zhuhai)}\,\,\textbf{Technology}\,\textbf{Co.,}\,\,\textbf{Ltd.}\,\,\textbf{All}\,\,\textbf{rights}\,\,\textbf{reserved.}$

4:0 DATE $0x01 - 0x1F$ RW 1	4:0	DATE	Time day setting 0x01 – 0x1F	RW	1
-----------------------------	-----	------	------------------------------	----	---

onfidential confidential

10 Infrared Remote Controller

10.1 Features

ATC2603C Infrared Remote Controller (IRC) module Support RC5/9012/NEC(8-bit)/RC6 protocol, the sample clock is 32.576kHz. IRC is connected with an Infrared Remote (IR) receiver, only when the received key data is equal to the IRC_WK register's data, including NEC, 9012, RC5 and RC6 mode, can IRC wake up the system by generating a wake up signal to PMU.

10.2 Modules Description

10.2.1 9012 Protocol

The 9012 protocol adopts PDM (Pulse Distance Modulation). Each pulse is one Tm (560 µs) 38kHz carrier burst, and LSB is transmitted first. Logic 1 takes 4Tm (2.25ms) to transmit, and logic 0 only takes 2Tm (1.12ms). A message is started by 8Tm (4.5ms) AGC burst, used to set the gain of the front IR receivers. Customer code and Command code length is both 8-bit, and they are transmitted twice to ensure the reliability of the transmission. And in the second time, Command code is inverted to Anti-code to verify the received messages.

Figure 10-1 9012 Protocol of Frame

Below are some values for reference:

Recommended carrier duty-cycle = 1/4 or 1/3.

Tm = 256/Fosc = 0.56ms (Fosc=455kHz)

Repetition time = 192Tm = 108ms

Carrier frequency = Fosc/12

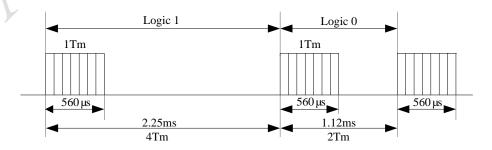


Figure 10-2 9012 Protocol of Logic transmission

When the key on the remote controller remains pressed down, the command will be transmitted only

once, even a repeat code is transmitted every 192Tm as long as the key remains pressed down. This repeat code is 8Tm (4.5ms) AGC pulse followed by 8Tm (4.5ms) space and a logic 1 plus 1Tm (560 µs) burst.

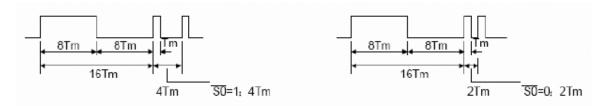


Figure 10-3 9012 Protocol of Repeat Code

10.2.2 NEC Protocol (8-bit)

The NEC protocol adopts Pulse Distance Modulation. Each pulse is one Tm (560 µs) 38kHz carrier burst, and LSB is transmitted first. Logic 1 takes 4Tm (2.25ms) to transmit, logic 0 only takes 2Tm (1.12ms). A message is started by 16Tm (9ms) AGC burst, which was used to set the gain of the front IR receivers. This AGC burst is followed by 8Tm (4.5ms) space, and then the Customer and Command code. Customer and Command codes are both 8-bit, they are transmitted twice for reliability; the second customer and command code are inverted to Anti-code to verify the received message. The whole transmission time is constant because every bit is repeated with its inverted length.

Figure 10-4 NEC Protocol of Frame

Below are some values for reference:

Recommended carrier duty-cycle: 1/4 or 1/3

Tm = 256/Fosc = 0.56ms (Fosc=455kHz)

Repetition time = 192Tm = 108ms

Carrier frequency = Fosc/12

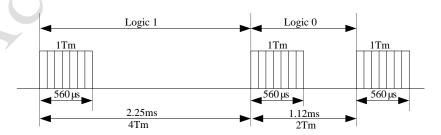


Figure 10-5 NEC Protocol of Logic transmission

When the key on the remote controller remains pressed down, the command will be transmitted only once, even a repeat code is transmitted every 192Tm as long as the key remains pressed down. This repeat code is a 16Tm (9ms) AGC pulse followed by a 4Tm (2.25ms) space and a Tm (560 µs) burst.

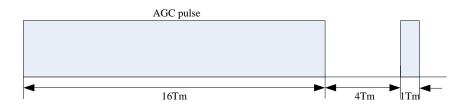


Figure 10-6 NEC Protocol Repeat Code

10.2.3 RC5 Protocol

The RC5 protocol adopts Bi-phase Modulation (or Manchester coding) of 38kHz IR carrier frequency. Transmission time of each bit is 1.8ms in this protocol, in which half of the transmission time is for the 38kHz carrier and the other half being idle. Logic 0 is a burst in the first half of the transmission time, logic 1 is a burst of the second half of the transmission time; see in Figure 10-7 below. The pulse/pause ratio of the 38kHz carrier frequency is 1/3 or 1/4, which reduced the power consumption.

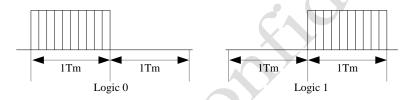


Figure 10-7 RC5 Protocol Logic

Below are some values for reference:

1 bit-time = 3*256 /Fosc= 1.688ms (Fosc=455kHz)

Tm = 1 bit-time/2 = 0.844ms

Repetition time= 4*16*2Tm=108ms

Carrier frequency = Fosc/12

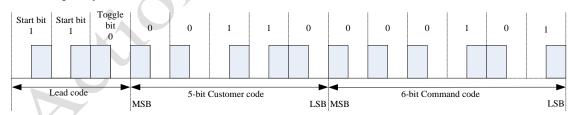


Figure 10-8 RC5 Protocol Frame

The first two pulses are start pulses, both are logic 1. Half of the transmission time will be elapsed before the receiver recognizes the real start of the message. The third bit is a toggle bit, this bit is inverted every time a key is released and pressed again. This is how the receiver distinguishes whether the key remains pressed down or repeatedly pressed. The next 5-bit Customer code represents the IR device's address, with MSB sent first. The following 6-bit command code is sent with MSB first, too. One message is 14 bits in total, which adds up to time duration of 28Tm. Sometimes a message may be shorter because the first half of the start bit S1 is idle, and if the last bit of the message is logic 0 the last half bit of the message is idle too. As long as a key remains down the message will be repeated every 128Tm (108ms). The toggle bit will remain the same logic during these repeated

messages. And this auto repeat feature can be configured by the receiver software.

Figure 10-9 RC5 Protocol of Repetition time

10.2.4 RC6 Protocol

The RC6 Protocol of mode 0 is supported only. RC-6 signals are modulated on a 36 kHz Infrared Red carrier. The duty cycle of this carrier is recommended between 25% and 50%. Transmission data is modulated using Manchester coding. This means that each bit (or symbol) will have both a mark and space in the output signal. If the symbol is 1, the first half of the bit time is a mark and the second half is a space. If the symbol is 0, the first half of the bit time is a space and the second half is a mark.

The main timing unit is 1T, which is 16 times the carrier period $(1/36kHz * 16 = 444 \mu s)$

$$1T = 1*16 / 36kHz = 444 \mu s$$

$$1Bit = 2T = 888 \,\mu s$$

Total transmission time (22 Bits) = 23.1 ms (message) + 2.7 ms (no signal)

Repetition time = 240T = 106.7ms

LS	SB	mb2 mb0	TR	a7 a0	c7 c0	
Header				Control	Information	Signal free

Figure 10-10 RC6 Protocol

The RC6 Protocol frame can be separated into four fields: Header, Control, Information and Signal free field. The signal free field is not used.

Header Field:

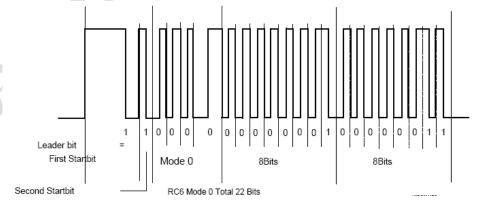


Figure 10-11 RC6 Protocol of Signal Frame

This leader bit is the start bit used to set the gain of the IR receiver unit, which has a mark time of 6T (2.666ms) and a space time of 2T (0.889ms).

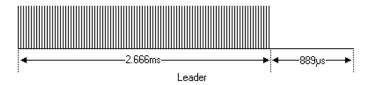


Figure 10-12 RC6 Protocol of Leader Bit

The normal bit, 0 and 1 are encoded by the position of the mark and space in the bit time, in which mark time is1T (0.444ms) and space time is1T (0.444ms).

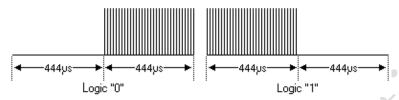


Figure 10-13 RC6 Protocol of Normal Bit

The trailer bit TR has a mark time of 2T (0.889ms) and a space time of 2T (0.889ms). Same, 0 and 1 are encoded by the position of the mark and space in the bit time. This bit functions like the traditional toggle bit, which will be inverted whenever a key is released. This bit separates a long key-press from a double key-press.

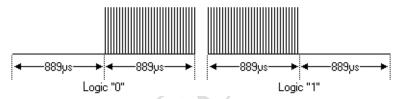


Figure 10-14 RC6 Protocol of Trailer Bit

Control field:

This field holds 8 bits which are used as address byte. This means that a total of 256 different devices can be controlled using mode 0 of RC-6. The MSB is transmitted first.

Information field:

The information field holds 8 bits which are used as command byte. This means that each device can have up to 256 different commands. The MSB is transmitted first.

10.3 Register List

Table 10-1 IRC Block Address

Name	Base Address
IRC	0x0000

Table 10-2 IRC Controller Registers

Offset	Register Name	Description
0x80	IRC_CTL	Infrared remote control register
0x81	IRC_STAT	Infrared remote status register
0x82	IRC_CC	Infrared remote control customer code register
0x83	IRC_KDC	Infrared remote control KEY data code register

0x84	IRC_WK	Infrared remote control wake up KEY data code register
0x85	IRC_RCC	Infrared remote control Receive customer code register
0x86	IRC_FILTER	Infrared remote control Filter register

10.4 Register Description

10.4.1 IRC_CTL

Infrared remote control register (RTCVDD) (default 0x0000) Offset = 0x80

Bit(s)	Name	Description	Access	Reset
15:4	-	Reserved		-
		IRC enable		
3	IRE	0: disable	RW	0x0
		1: enable		
		IRC IRQ enable		
2	IIE	0: disable	RW	0x0
		1:enable		
		IRC code mode select		
		00: 9012 code		
1:0	ICMS	01: 8bits NEC code	RW	0x0
		10: RC5 code		
		11: RC6 code		

10.4.2 IRC_STAT

Infrared remote control register (RTCVDD) (default 0x0000) Offset = 0x81

Bit(s)	Name	Description	Access	Reset
15:7	-	Reserved	-	-
		User code don't match pending bit. Write 1 to this bit		
		will clear it, or auto clear if receive the correct user		
6	UCMP	code the next time.	RW	0x0
		0: user code match		
		1: user code don't match		
		Key data code don't match pending bit. Write 1 to this		
		bit will clear it, or auto clear if receive the correct key		
5	KDCM	data code the next time	RW	0x0
		0: key data code match		
		1: key data code don't match		
4	RCD	Repeated code detected, write 1 to this bit will clear it,	RW	0

		otherwise don't change		
		0: no repeat code		
		1: detect repeat code		
3	-	Reserved	-	-
		IRC IRQ pending bit, write 1 to this bit will clear it		
		0: no IRQ pending		
		1: IRQ pending		
	IIP	The precondition of generating interrupt is that all the	DW	0.0
2		code received is correct, including customer code and	RW	0x0
		key code. If neither customer code nor key code is		
		incorrect, the repeat code following this frame won't		
		generate interrupt, too.	• 6	
1	-	Reserved	- V	-
		IRC receive error pending		
	IREP	0: receive OK		
0		1: receive error occurs if not match the protocol.	RW	0x0
		Writing 1 to this bit will clear this bit, or auto clear if	KW	UXU
		receive the correct user code and key data code the		
		next time.		

10.4.3 IRC_CC

Infrared remote control customer code register (RTCVDD) (default 0x0000) Offset = 0x82

Bit(s)	Name	Description	Access	Reset
		Infrared remote control customer code		
		In RC5 mode:		
		Bit 4:0 is the customer code;		
		In 9012 and NEC mode:		
15:0	ICCC	Bit 15:0 is the customer code;	RW	0x0
		In RC6 mode:		
		Bit 7:0 is the customer code;		
		If the received customer codes not comply with		
\ \		this register value, error occurs.		

10.4.4 IRC_KDC

Infrared remote control KEY data code register (RTCVDD) (default 0x0000) Offset = 0x83

Bit(s)	Name	Description	Access	Reset
15:0	IKDC IRC key data code	IRC key data code	RW	0x0
13.0	IKDC	In RC5 mode:	IX VV	UXU

Bit 5:0 is the Key data;	
In 9012 and NEC mode:	
Bit 7:0 is the Key data; Bit 15:8 is the Key	
anti-data;	
In RC6 mode:	
Bit 7:0 is the Key data;	
Once the key value is received the register will	
be updated, if repeat code is received, then the	
register won't be updated.	

10.4.5 IRC_WK

Infrared remote control wake up KEY data code register (RTCVDD) (default 0x0000) Offset = 0x84

Bit(s)	Name	Description	Access	Reset
		IRC wake up key data code		
		In RC5 mode:		
		Bit 5:0 is the wake up Key data;		
		In 9012 and NEC mode:		
		Bit15:0 is the wake up key data;		
		Bit 7:0 is the Key data; Bit 15:8 is the Key		
15:0	IKDC	anti-data;	RW	0x0
		In RC6 mode:		
		Bit 7:0 is the wake up key data;		
		If the received key value is not same with the		
		value set by this register, then a wakeup signal		
		will be generated to PMU, and an interrupt will		
		be generated at the same time.		

10.4.6 IRC_RCC

Receive customer code register (RTCVDD) (default 0x0000) Offset = 0x85

Bit(s)	Name	Description	Access	Reset
		Received customer code		0x0
		In RC5 mode:		
	ICCC	Bit 4:0 is the customer code;	R	
15:0		In 9012 and NEC mode:		
13.0	iccc	Bit 15:0 is the customer code;		
	In RC6 mode: Bit 7:0 is the customer code; The received customer code is disp	In RC6 mode:		
		Bit 7:0 is the customer code;		
		The received customer code is displayed to		

customers for reference.	

10.4.7 IRC_FILTER

Infrared remote control filter register (RTCVDD) (default 0x0000) Offset = 0x86

Bit(s)	Name	Description	Access	Reset
31:4	-	Reserved	-	-
		IR Filter control bit		
3	FC	0: disable	RW	0x0
		1: enable	• 6	
		IR filter counter	X	
		Determine the pulse width that can be filtered.		
2:0	IFC	32.768kHz clock source cycle number, each	RW	0x0
2.0		cycle is 30.517us. Here one cycle is a unit, for	IX VV	UXU
		example, setting T = 20us, then write 6		
		(200/30.517) to this register		

11 Interrupt Controller

11.1 Features

Interrupt Controller (INTS) module can receive and handle 16 Interrupt signals sent through pin EXTIRQ. Table 11-1 lists all the interrupt sources. Details about these interrupts can be found in relevant sections. Please refer to the register INTS_PD to get interrupt that has happened, besides, any of these 16 interrupts can be masked by setting register INTS_MSK.

Table 11-1 Interrupt Sources list

Interrupt Number	Sources	Type
0	AUDIO	High Level
1	OV	High Level
2	OC	High Level
3	OT	High Level
4	UV	High Level
5	ALARM	High Level
6	ONOFF	High Level
7	SGPIO	High Level
8	IR	High Level
9	REMCON	High Level
10	POWERIN	High Level
11-15	Reserved	-

Note: OV-overvoltage, OC-overcurrent, OT-overtemperature, UV-Undervoltage.

11.2 Block Diagram

Figure 11-1 given below shows the architecture of the interrupt controller:

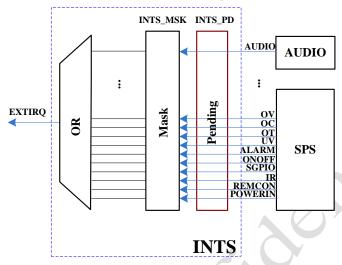


Figure 11-1 Interrupt Controller Block Diagram

11.3 Register List

Table 11-2 Interrupt source Block Base Address

Name	Base Address
INTS_REGISTER	0xC8

Table 11-3 Interrupt source Block Configuration Registers List

Offset	Register Name	Description
0x00	INTS_PD	Interrupt Pending register
0x01	INTS_MSK	Interrupt Mask register

11.4 Register Description

11.4.1 INTS_PD

CPU can access the status of interrupt sources by read this register. Interrupt Pending bit can not be cleared by writing 1, it is not cleared until device pending is cleared.

offset = 0x00

Bit	Name	Description	Access	Reset
15:11	-	Reserved	-	-
10:0	INTS_PD	Interrupt Pending bit. Interrupt name "n"	R	INTS_PD[n]

Copyright[©] 2014-2018 Actions (Zhuhai) Technology Co., Ltd. All rights reserved.

	please refer to Interrupt Sources Table.	
	0: Interrupt source n request is not active	
	1: Interrupt source n request is active.	

11.4.2 **INTS_MSK**

CPU can enable or disable by write this register. 0: Interrupt is disabled. 1: Interrupt is enabled. offset = 0x01

Bits	Name	Description	Access	Reset
15:11	-	Reserved	-	-
10	POWERIN	POWER IN Interrupt Mask Bit	RW	0
9	REMCON	REMOTE CONTROL Interrupt Mask Bit	RW	0
8	IR	IR Interrupt Mask Bit	RW	0
7	SGPIO	SGPIO Interrupt Mask Bit	RW	0
6	ONOFF	ONOFF Interrupt Mask Bit	RW	0
5	ALARM	ALARM Interrupt Mask Bit	RW	0
4	UV	UN-VOLTAGE Interrupt Mask Bit	RW	0
3	OT	OVER TEMPERATURE Interrupt Mask Bit	RW	0
2	OC	OVER CURRENT Interrupt Mask Bit	RW	0
1	OV	OVER VOLTAGE Interrupt Mask Bit	RW	0
0	AUDIO	AUDIO Interrupt Mask Bit	RW	0

12 General Purpose I/O

12.1 Features

This chapter will describe the multiplexing of the whole system and the GPIO function. There are 8 bits General purpose I/O ports in ATC2603C to provide more flexible application. The 8 GPIOs have independent inputs and outputs, and the multiplexing is software controlled and can be configured for different applications. The GPIOs support different driving capacities.

12.2 Registers List

Table 12-1 GPIO/MFP Registers Block base Address

Name	Base Address
MFP_REGISTER	0xD0

Table 12-2 GPIO/MFP Registers Offset Address

Offset	Register Name	Description
0x00	MFP_CTL	Multiplexing Control
0x02	GPIO_OUTEN	GPIO Output Enable
0x03	GPIO_INEN	GPIO Input Enable
0x04	GPIO_DAT	GPIO Data
0x05	PAD_DRV	PAD Drive Capacity Select
0x06	PAD_EN	PAD enable control

12.3 Register Description

12.3.1 MFP_CTL

Multiplexing Control Register

Offset=0x00

Bits	Name	Description	Access	Reset
15:13	-	Reserved	-	-
		MICINR multiplexing		
		00: MICINR		
12:11	MICINR	01: MICINLP (or MICINRP)	RW	0x0
		10: Reserved		
		11:Reserved		
		FMINL and FMINR multiplexing		
		00: FMINL, FMINR		
10:9	EMINI D	01: Reserved	RW	0x0
10.9	FMINL_R	10: MICINLP	KVV	OXO
		11: Reserved		
		(This pad is analog and digital multiplexed)		
	I2S_MCLK1_LRCLK1_DOUT	I2S_MCLK1, I2S_LRCLK1, I2S_DOUT		
		Multiplexing		
		00: I2S_MCLK1, I2S_LRCLK1 and		
8:7		I2S_DOUT	RW	0x0
0.7		01: GPIO3, GPIO4 and GPIO5	IX VV	OXO
	<i>Y</i>	10: LOSC_32K, LOSC_32K and		
		I2S_DOUT		
		11: Reserved		
		I2S_MCLK0 and I2S_LRCLK0		
		Multiplexing		
6.5	I2S_MCLK0_LRCLK0	00: I2S_MCLK0 and I2S_LRCLK0	RW	0x0
0.5	125_WCLK0_LKCLK0	01: GPIO0 and GPIO1	IX VV	UXU
		10: Reserved		
		11: Reserved		

4:3		I2S_DIN Multiplexing 00: I2S_DIN 01: GPIO2 10: I2S_DOUT 11: Reserved	RW	0x0
2	-	Reserved	-	-
1:0		MICINL multiplexing 00: MICINL 01: MICINLN(or MICINRN) 10: Reserved 11: Reserved	RW	0x0

Note: When bit[1:0] and bit[12:11]is set to 01, Choosing (MICINLN and MICINLP) or (MICINRN and MICINRP) is determined by MICEN & ADCEN.

12.3.2 GPIO_OUTEN

GPIO Output Enable Register

Offset=0x02

Bits	Name	Description	Access	Reset
15:6	-	Reserved	-	-
		GPIO[5:0] Output Enable.		
5:0	GPIO_OUTEN	0: Disable	RW	0x0
		1: Enable		

12.3.3 GPIO_INEN

GPIO Input Enable Register

Offset=0x03

Bits	Name	Description	Access	Reset
15:6	-	Reserved	-	-
	7	GPIO[5:0] Input Enable.		
5:0	GPIO_INEN	0: Disable	RW	0x0
		1: Enable		

12.3.4 **GPIO_DAT**

GPIO Data Register

Offset=0x04

Bits	Name	Description	Access	Reset
------	------	-------------	--------	-------

15:6	-	Reserved	-	-
5:0	GPIO_DAT	GPIO[5:0] Input/Output Data.	RW	0x0

12.3.5 **PAD_DRV**

Pad Driving Capacity

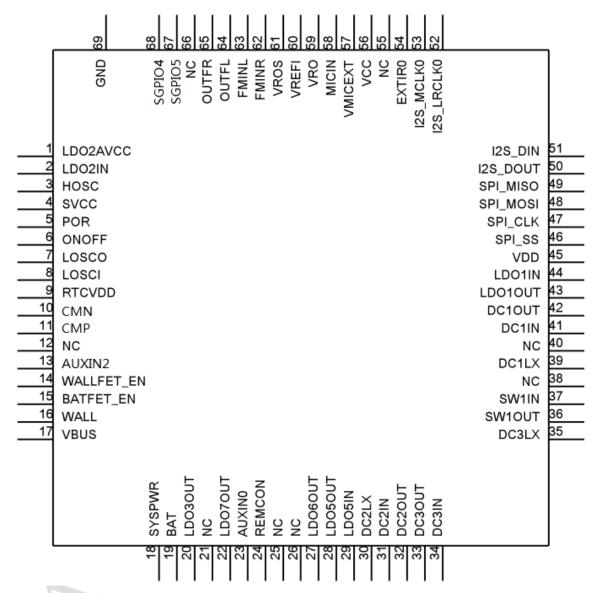
Offset=0x05

Bits	Name	Description	Access	Reset
15:14	-	Reserved	-	-
		PAD EXTIRQ Drive Capacity	• 67	N'
13	EXTIRQ_DRV	0: Level 1	RW	0x0
		1: Level 2		
		PAD TWSI_CLK&TWSI_DATA Drive		
12		Capacity		0x0
12	TWSI_CLK_DATA_DRV	0: Level 1	RW	UXU
		1: Level 2		
		PAD I2S_MCLK1 Drive Capacity		
		0:Level 1		
11:10	I2S_MCLK1_DRV	1:Level 3	RW	0x0
		2:Level 5		
		3:reserved		
		PAD I2S_LRCLK1 Drive Capacity		
		0:Level 1		
9:8	I2S_LRCLK1_DRV	1:Level 3	RW	0x0
		2:Level 5		
		3:reserved		
	Y'	PAD I2S_MCLK0 Drive Capacity		
	• , ()	0:Level 1		
7:6	I2S_MCLK0_DRV	1:Level 3	RW	0x0
		2:Level 5		
		3:reserved		
		PAD I2S_LRCLK0 Drive Capacity		
		0:Level 1		
5:4	I2S_LRCLK0_DRV	1:Level 3	RW	0x0
		2:Level 5		
		3:reserved		
		PAD I2S_DOUT Drive Capacity		
		0:Level 1		
3:2	I2S_DOUT_DRV	1:Level 3	RW	0x0
		2:Level 5		
		3:reserved		
1:0	I2S_DIN_DRV	PAD I2S_DIN Drive Capacity	RW	0x0

	0:Level 1	
	1:Level 3	
	2:Level 5	
	3:reserved	

12.3.6 PAD_EN

Pad enable control


Offset=0x06

Bits	Name	Description	Access	Reset
15:7	-	Reserved	o_	7
_	DAD ENG	1:P_I2S_MCLK0 pad enable	DW	0x0
6	PAD_EN6	0:P_I2S_MCLK0 pad disable	RW	
5	DAD ENS	1:P_I2S_LRCLK0 pad enable	RW	0x0
3	PAD_EN5	0:P_I2S_LRCLK0 pad disable	RW	
4	PAD_EN4	1:P_I2S_DIN pad enable	RW	0x0
		0:P_I2S_DIN pad disable	KW	
3	PAD_EN3	1:P_I2S_MCLK1 pad enable	RW	0x0
		0:P_I2S_MCLK1 pad disable		UXU
2	PAD_EN2	1:P_I2S_LRCLK1 pad enable	RW	0x0
		0:P_I2S_LRCLK1 pad disable		
1	PAD_EN1	1:P_I2S_DOUT pad enable	DW	0.0
		0:P_I2S_DOUT pad disable	RW	0x0
0	DAD ENO	1:P_EXTIRQ pad enable	RW	0x0
	PAD_EN0	0:P_EXTIRQ pad disable		

13 Pin Description

13.1 ATC2603C Pin Assignment

Note: This is a schematic figure for ATC2603C, Pin 69 is e-pad under the IC Figure 13-1 ATC2603C schematic pin assignment

13.2 ATC2603C Pin Definition

Table 13-1 ATC2603C Pin descriptions

Pin No.	Pin Name	Function Name	I/O	Description
1	LDO2AVCC	LDO2AVCC	power	Output of voltage regulator LDO2, also for Analog IO use

2	LDO2IN	LDO2_8IN	supply	Input of voltage regulator LDO2
3	HOSC	HOSCO	AO	Connection for 24 MHz crystal (input to oscillator from crystal)
4	SVCC	SVCC	power	Output of voltage regulator LDO11, the IO power for standby mode
5	POR	POR	DO	power on reset output to main controller
6	ONOFF	ONOFF	DI	ONOFF key input/reset signal
7	LOSCO	LOSCO	AIO	Crystal Oscillator Input of 32.768 kHz
8	LOSCI	LOSCI	AI	Crystal Oscillator output of 32.768 kHz
9	RTCVDD	RTCVDD	power	Output of voltage regulator LDO12
10	CMN	CMN	AIO	CM ADC input
11	CMP	CMP	AIO	CM ADC input
12	NC	-	-	-
		AUXIN2		general ADC input2
1.0	ATIVDIO	IR	AIO	IR control input
13	AUXIN2	LOSC_32K		32K clock output
		SGPIO3	DIO	General Purpose Input/Output 3 SVCC
14	WALLFET_E	WALLEGE EN	AO	Gate signal of external MOSFET connected to
14	N	WALLFET_EN	AU	WALL
15	BATFET_EN	BATFET_EN	AO	Gate signal of external MOSFET connected to BAT
16	WALL	WALL	supply	Connected to wall adapter power supply
17	VBUS	VBUS	supply	Connected to USB power supply
18	SYSPWR	SYSPWR	power	SYSTEM POWER
19	BAT	BAT	supply	Connected to battery power supply
20	LDO3OUT	LDO3OUT	power	Core logic power
21	NC	-	-	-
22	LDO7OUT	LDO7OUT	AO	Output of voltage regulator LDO7
	K	AUXIN0		general ADC input0
		IR	AIO	IR control input
23	AUXIN0	LOSC_32K	AIO	32K clock output
		PWM0		PWM output0
	Y '	SGPIO1	DIO	General Purpose Input/Output 1 SVCC
	7	REM_CON		general ADC input4, for remote control
24	REMCON	IR	AIO	IR control input
24	REMICON	LOSC_32K		32K clock output
		SGPIO0	DIO	General Purpose Input/Output 0 SVCC
25	NC	-	-	-
26	NC	-	-	-
27	LDO6OUT	LDO6OUT	AO	Output of voltage regulator LDO6
28	LDO5OUT	LDO5OUT	AO	Output of voltage regulator LDO5
29	LDO5IN	LDO5IN	supply	Input of voltage regulator LDO5

30	DC2LX	DC2LX	AO	DC-DC2 inductor connection
31	DC2VIN	DC2VIN	supply	DC-DC2 power input
32	DC2VOUT	DC2VOUT	AO	Output of DC-DC2
33	DC3VOUT	DC3VOUT	power	Output of DC-DC3
34	DC3VIN	DC3VIN	supply	DC-DC3 power input
35	DC3LX	DC3LX	AO	DC-DC3 inductor connection
36	SWITCH10 UT	SWITCH1OUT	power	Output of voltage regulator Switch1
37	SWITCH1IN	SWITCH1IN	supply	Input of voltage regulator Switch1
38	NC	-	-	-
39	DC1LX	DC1LX	AO	DC-DC1 inductor connection
40	NC	-	-	-
41	DC1VIN	DC1VIN	supply	DC-DC1 power input
42	DC1VOUT	DC1VOUT	power	Output of DC-DC1
43	LDO10UT	LDO10UT	AO	Output of voltage regulator LDO1
44	LDO1IN	LD01IN	supply	Input of voltage regulator LDO1&LDO10
45	VDD	VDD	power	Core logic power
46	I2S_LRCLK1	I2S_LRCLK1 LOSC_32K GPIO4	DI	I2S LR CLOCK1 32K clock output General Purpose Input/Output 4
47	TWI_SCLK	TWI_SCLK	DI	TWI clock
48	TWI_SDATA	TWI_SDATA	DI	TWI data
49	I2S_MCLK1	I2S_MCLK1 LOSC_32K GPIO3	DO	I2S Master CLOKCK1 32K clock output General Purpose Input/Output 3
50	I2S_DOUT	I2S_DOUT GPIO5	DIO	I2S DATA output General Purpose Input/Output 5
51	I2S_DIN	I2S_DIN I2S_DOUT GPIO2	DIO	I2S Data input I2S Data output General Purpose Input/Output 2
52	I2S_LRCLK0	I2S_LRCLK0 GPIO1	DIO	I2S LR CLOCK0 General Purpose Input/Output 1
53	I2S_MCLK0	I2S_MCLK0 GPIO0	DIO	I2S Master CLOKCK0 General Purpose Input/Output 0
54	EXTIRQ	EXTIRQ	DO	IRQ output signal
55	NC	-	-	-
56	VCC	VCC	power	Digital IO power
57	VMICEXT	VMICEXT	AO	External MIC bias
-	•			

	ı	Ī	ı	T
58	MICIN	MICINL MICOLN	AI	MICL channel input MICOL Negative channel input when use as differential
59	VRO	VRO	AO	VR output
60	VREFI	VREFI	AIO	Reference Voltage, with capacitance
61	VROS	VROS	AO	VRO SENSE
62	FMINR	FMINR	AI	FMR channel input
63	FMINL	FMINL MICINLP	AI	FML channel input MICOL Positive channel input when use as differential
64	OUTFL	OUTFL	AO	Front left channel output
65	OUTFR	OUTFR	AO	Front right channel output
66	NC	-	-	-
		SGPIO5	DIO	General Purpose Input/Output 5 SVCC
67	SGPIO5	IR		IR control input
07		LOSC_32K	AIO	32K clock output
		PWM1		PWM output1
	SGPIO4	SGPIO4	DIO	General Purpose Input/Output 4 SVCC
68		IR	AIO	IR control input
		LOSC_32K	AIO	32K clock output
69	EPAD	-		Ground

Version 2.3 Page 125

14 Package and Ordering Information

14.1 Package Drawing

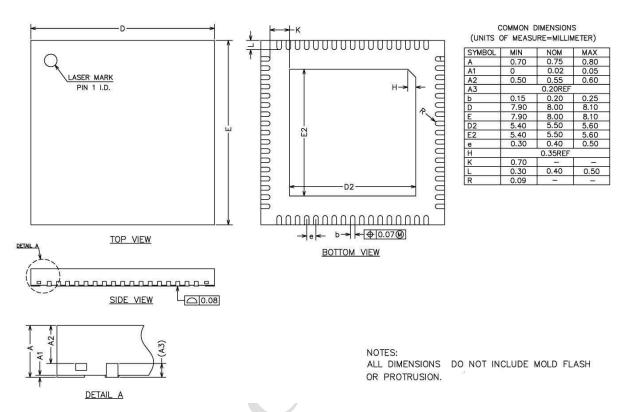


Figure 14-1 ATC2603C Package Drawing

Appendix

Acronyms and Terms

AMIC Analog Microphone

ADC Analog-to-Digital Converter
AGC Automatic Gain Control

BT Bluetooth

CC Constant Current
CV Constant Voltage
DC-DC/DC-DC DC to DC Converter

DAC Digital-to-Analog Converter
GPIO General Purpose Input/Output

HW Hardware
IR Infrared
I/O Input/Output
I2S Inter-IC Sound

LSB Least Significant Bit
Li-Ion Lithium Ion (battery type)
LDO Low Dropout Regulator

MIC Microphone

MSB Most Significant Bit
OS Operation System

OSC Oscillator

PA Power Amplifier

PMIC Power Management Integrated Circuit

PMU Power Management Unit
PDM Pulse Distance Modulation
PFM Pulse Frequency Modulation
PWM Pulse Width Modulation

RTC Real-Time Clock SCY Sampling Cycle

SD Secure Digital memory card

SW Software

SoC System on Chip

THD Total Harmonic Distortion

UART Universal Asynchronous Receiver Transmitter

Actions (Zhuhai) Technology Co., Limited

Address: No. 1 / C, Ke Ji Si Road, Hi-Tech Zone, Tangjia, Zhuhai

Tel: +86-756-3392353 Fax: +86-756-3392251 Post Code: 519085

http://www.actions-semi.com

Business Email: mp-sales@actions-semi.com
Technical Service Email: mp-cs@actions-semi.com